MapReduce实现WordCount词频统计

    技术2022-07-11  132

    文章目录

    一.设计分析二.代码开发1.新建maven工程,添加依赖2.编写Mapper类3.编写Reduce类4.编写Driver类执行Job5.执行会在本工程目录出现一个test目录打开目录中的part-r-00000文件即统计词频文件,如下:6.在hadoop中运行1)修改Driver类中输入输出路径:2)打jar包将jar包上传到hadoop的lib目录下3)将测试数据上传到hdfs目录中:4)提交MapReduce作业运行: (注意如果存在output目录需要先删除)5)查看作业输出结果,如下图所示:

    一.设计分析

    1.Map过程:并行读取文本,对读取的单词进行map操作,每个词都以<key,value>形式生成2.Reduce操作是对map的结果进行排序合并最后得出词频

    二.代码开发

    1.新建maven工程,添加依赖

    <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-common</artifactId> <version>2.6.0</version> </dependency> <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-hdfs</artifactId> <version>2.6.0</version> </dependency> <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-client</artifactId> <version>2.6.0</version> </dependency> <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-mapreduce-client-core</artifactId> <version>2.6.0</version> </dependency> <dependency> <groupId>commons-logging</groupId> <artifactId>commons-logging</artifactId> <version>1.2</version> </dependency>

    2.编写Mapper类

    package hadoop.mapreduce; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; import java.io.IOException; /** * @author sunyong * @date 2020/07/01 * @description * KEYIN:输入的key类型 * VALUEIN:输入的value类型 * KEYOUT:输出的key类型 * VALUEOUT:输出的value类型 */ public class WCMapper extends Mapper<LongWritable, Text,Text, IntWritable> { Text k = new Text(); IntWritable v = new IntWritable(1); @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { //1.将文本转化成字符串 String line = value.toString(); //2.将字符串切割 String[] words = line.split("\\s+"); //3.循环遍历,将每一个单词写出去 for (String word : words) { k.set(word); context.write(k,v); } } }

    3.编写Reduce类

    package hadoop.mapreduce; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Reducer; import java.io.IOException; /** * @author sunyong * @date 2020/07/01 * @description * KEYIN:reduce端输入的key类型,即map端输出的key类型 * VALUEIN:reduce输入的value类型,即map端输出的value类型 * KEYOUT:reduce输出的key类型 * VALUEOUT:reduce输出的value类型 */ public class WCReducer extends Reducer< Text,IntWritable,Text, IntWritable> { IntWritable v = new IntWritable(); int sum; @Override protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { //reduce端接收到的类型大概是这样的 (wish,(1,1,1,1)) //对迭代器进行累加求和 //sum必须赋值为0初始化,因为reduce方法是每个键都会执行一次 sum=0; for (IntWritable count : values) { sum+=count.get(); } v.set(sum); //将key和value进行写出 context.write(key,v); } }

    4.编写Driver类执行Job

    package hadoop.mapreduce; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import java.io.IOException; /** * @author sunyong * @date 2020/07/01 * @description */ public class WCDriver { public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException { //1.创建配置文件,创建Job Configuration conf = new Configuration(); Job job = Job.getInstance(conf,"wordcount"); //2.设置jar的位置,参数为本类类名.class job.setJarByClass(WCDriver.class); //3.设置map和reduce的位置 job.setMapperClass(WCMapper.class); job.setReducerClass(WCReducer.class); //4.设置map输出端的key,value类型 job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(IntWritable.class); //5.设置reduce输出的key,value类型 job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); //6.设置输入和输出路径,输入的是本地自己建的txt文件,会输出一个test目录 FileInputFormat.setInputPaths(job,new Path("F:\\sunyong\\Java\\codes\\javaToHdfs\\download\\a.txt")); FileOutputFormat.setOutputPath(job,new Path("test")); //7.提交程序运行 boolean result = job.waitForCompletion(true); System.exit(result?0:1); } }

    5.执行会在本工程目录出现一个test目录打开目录中的part-r-00000文件即统计词频文件,如下:

    6.在hadoop中运行

    1)修改Driver类中输入输出路径:

    //6.设置输入输出路径 FileInputFormat.setInputPaths(job,new Path(args[0])); FileOutputFormat.setOutputPath(job,new Path(args[1]));

    2)打jar包将jar包上传到hadoop的lib目录下

    3)将测试数据上传到hdfs目录中:

    hdfs dfs -mkdir /input,hdfs dfs -put /tmp/test.txt /input/

    4)提交MapReduce作业运行: (注意如果存在output目录需要先删除)

    hadoop jar /opt/install/hadoop/lib/javaToHdfs.jar hadoop.mapreduce.WCDriver /input/test.txt /output

    5)查看作业输出结果,如下图所示:

    hdfs dfs -text /output/part-*

    Processed: 0.020, SQL: 9