PAT甲级 1064 Complete Binary Search Tree (30分)

    技术2022-07-11  94

    1064 Complete Binary Search Tree (30分)

    A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:

    The left subtree of a node contains only nodes with keys less than the node's key.The right subtree of a node contains only nodes with keys greater than or equal to the node's key.Both the left and right subtrees must also be binary search trees.

     

    A Complete Binary Tree (CBT) is a tree that is completely filled, with the possible exception of the bottom level, which is filled from left to right.

    Now given a sequence of distinct non-negative integer keys, a unique BST can be constructed if it is required that the tree must also be a CBT. You are supposed to output the level order traversal sequence of this BST.

    Input Specification:

    Each input file contains one test case. For each case, the first line contains a positive integer N (≤1000). Then N distinct non-negative integer keys are given in the next line. All the numbers in a line are separated by a space and are no greater than 2000.

    Output Specification:

    For each test case, print in one line the level order traversal sequence of the corresponding complete binary search tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.

    Sample Input:

    10 1 2 3 4 5 6 7 8 9 0

    Sample Output:

    6 3 8 1 5 7 9 0 2 4

     解题思路:先按层序遍历建一课空的完全二叉树,然后将输入序列从小到大排序,之后按中序遍历依次将已排好序的序列插入建好的空树中,最后层序遍历建好的树。

    #include<iostream> #include<queue> #include<algorithm> #define Null -1 using namespace std; struct node{ int val; struct node *left, *right; int flag = 0; }; node *nodeTemp; int nodeFlag = 0; node *newNode(int v){ node *root = new node(); root->val = v; root->left = root->right = NULL; return root; } void findNode(node *root){ if(root->left){ findNode(root->left); } if(!nodeFlag){ if((root->left == NULL && root->val == Null) || (root->left != NULL && root->val == Null)){ nodeTemp = root; nodeFlag = 1; return; } } if(root->right){ findNode(root->right); } } void insert(node *root, int v){ nodeFlag = 0; findNode(root); nodeTemp->val = v; } node *makeTree(int n){ node *root = newNode(Null); queue<node*> q; q.push(root); for(int i = 1; i < n; i++){ node *temp; temp = q.front(); temp->left = newNode(Null); q.pop(); q.push(temp->left); i++; if(i >= n){ break; } temp->right = newNode(Null); q.push(temp->right); } return root; } void levelTravel(node *root){ queue<node*> q; q.push(root); printf("%d", root->val); if(root->left){ q.push(root->left); } if(root->right){ q.push(root->right); } q.pop(); while(!q.empty()){ node *temp = q.front(); printf(" %d", temp->val); if(temp->left){ q.push(temp->left); } if(temp->right){ q.push(temp->right); } q.pop(); } } int main(){ int n, val; int a[1005]; scanf("%d", &n); //建树 node *root = makeTree(n); //填入值 for(int i = 0; i < n; i++){ scanf("%d", &a[i]); } sort(a, a + n); for(int i = 0; i < n; i++){ insert(root, a[i]); } //层序遍历输出 levelTravel(root); return 0; }

     

    Processed: 0.012, SQL: 9