实例:文本词频统计

    技术2022-07-11  113

    文本词频统计

    英文词频统计

    def getText(): txt = open("hamlet.txt", "r", encoding='UTF-8').read() txt = txt.lower() #降噪,避免大小写的干扰 #用空格替换特殊符号 for ch in '!"#$%&()*+,-./:;<=>?@[\\]^_‘{|},《》~’': txt = txt.replace(ch, " ") return txt hamleTxt = getText() words = hamleTxt.split() counts = {} for word in words: counts[word] = counts.get(word, 0) + 1 items = list(counts.items()) #列表的排序方法,True返回从大到小 #按照键值对的第二个元素排序 items.sort(key=lambda x:x[1], reverse=True) for i in range(10): word, count = items[i] print("{0:<10}{1:>5}".format(word, count))

    中文文本词频统计

    以三国演义为例

    import jieba txt = open("三国演义.txt", "r", encoding="gb18030").read() words = jieba.lcut(txt) counts = {} for word in words: if len(word) == 1: continue else: counts[word] = counts.get(word, 0) + 1 items = list(counts.items()) items.sort(key=lambda x:x[1], reverse=True) for i in range(15): word, count = items[i] print("{0:<10}{1:>5}".format(word, count))

    面向问题分析(人名统计)

    代码升级版

    增加排除词库,和人名的别名统一 注意:排除词库需要不断运行,不断测试添加,此处并不完全

    import jieba txt = open("三国演义.txt", "r", encoding="gb18030").read() #排除词库 excludes = {"将军", "却说", "荆州", "二人", "不可", "不能", "如此", "商议", "如何", "左右", "军马", "次日"} words = jieba.lcut(txt) counts = {} for word in words: if len(word) == 1: continue elif word == "诸葛亮" or word == "孔明曰": rword = "孔明" elif word == "关公" or word == "云长": rword = "关羽" elif word == "玄德" or word == "玄德曰": rword = "刘备" elif word == "孟德" or word == "丞相": rword = "曹操" else: rword = word counts[rword] = counts.get(rword, 0) + 1 for word in excludes: del counts[word] items = list(counts.items()) items.sort(key=lambda x:x[1], reverse=True) for i in range(15): word, count = items[i] print("{0:<10}{1:>5}".format(word, count))

    通过不断添加排除词库,运行程序,得三国演义人物出场顺序前20

    Processed: 0.013, SQL: 9