这篇文章主要介绍了记一次蚂蚁金服的面试经历,文中详细的介绍了几次面试的记录,对大家的学习或者工作具有一定的参考学习价值,分享给大家,也希望大家都面试成功 本文源自网络
2016在实习的时候,当时一个一起实习的朋友在2020年5月份的时候突然在微信上找我,问我要不要面试下蚂蚁金服。问了下相关信息才知道他在2019年11月的时候进到蚂蚁金服,现在招人就想到了我,问我要不要试一下。
刚开始还是有所顾虑的,因为毕竟是大厂,进去应该不容易,但是这个朋友进去了,想想应该也没有很难吧,毕竟当时实习的时候,他技术并不怎么样。但是毕竟过去好几年了,现在人家可能变厉害了。
所以一开始并没有急着提交简历,而是说准备下再提交简历。然后就准备了一周,写简历,刷题,在网上找蚂蚁金服的面经。提交了一份简历,然后发现简历上面没有写学历,幸好他还没提交,就修改了下重新发了一份,然后他又给我提了几个建议,所以又改了一版,才最终提交。
提交简历后的第二天下午,上班的时候蚂蚁金服的面试官打电话过来了,说要面试,当时正在上班,就说了下不方便,就约了当天晚上再面试。谁知道当天小组因为来了新人,晚上要聚餐,所以没办法,就厚着脸皮给面试官发了短信,说了下晚上临时有事不能参加,想约下第二天或者周末。没想到面试官很理解,主要提出第二天晚上八点面试,短信上还让我好好准备,好好加油。
题外话: 有时间冲突的时候及时跟面试官沟通,往往第一面是技术面,大家都是做技术的,能理解的。 平时多交点朋友往往会有意外的惊喜。
第二天晚上六点多快七点的时候面试官提前打电话了,这天是周五幸好及时下班,原本是想着早点下班回去再准备准备,谁知道电话来的那么突然,刚点好晚饭,还没来得及吃。既然电话都打来了,那就面呗,就到店外面面试了。
大致讲了自己的姓名,毕业院校,哪年毕业,个人爱好以及平时空闲时间做点什么,这个如实回答就好。因为之前有面试过,所以准备过。建议可以自己提前写下来,多说几遍,找点感觉。
这个就因人而异了,每个人熟悉的东西都不一样,一定要说自己最擅长的东西,不要给自己挖坑。因为面试官下一步就会根据你的回答进行提问。对于我来是,工作了几年学的东西多而杂,没有什么很深入的,但是总不能说没有吧,所以就说了 Java 开发比较多,所以 Java 语言熟悉多一点。然后面试官就说:“好,那我就问你一点 Java 语言方面的。”
这个作为一个面试必问的题目,所以我还是提前准备过的,看过源码。所以这个问题不是问题,答完,面试官说回答的对了。 HashMap,HashTable,ConcurrentHashMap 面试必备,针对1.7和1.8的不同实现加以说明。包括底层的数据结构,Hash 碰撞生成链表,Java8的链表转红黑树。
根据自身情况,用过就用过,没用过就没有用过。我回答有简单的使用过,但是使用的场景不多。面试官也就没追问了,说了没关系,就继续。
讲了下四中线程池,单一线程池,固定大小线程池,缓存线程池,定时线程池。但是关于固定大小线程池底层是如何实现的,回答的不好,面试官直接问底层的源码是不是没看过,就说是的。面试官说没关系。。。
追加:线程池底层都是通过ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue workQueue, ThreadFactory threadFactory, RejectedExecutionHandler handler)来实现的。corePoolSize: 表示需要设置的线程个数; maximumPoolSize: 线程池允许的最大线程个数; keepAliveTime: 空闲线程存活的时间,超过这个时间就会被回收; unit: 存活时间的单位;workQueue: 需要执行的任务队列。threadFactory: 线程工厂,用于创建线程,一般用默认的即可; handler: 拒绝策略,当任务太多来不及处理,如何拒绝任务; 拒绝策略: 直接丢弃(DiscardPolicy) 丢弃队列中最老的任务(DiscardOldestPolicy) 抛异常(AbortPolicy) 将任务分给调用线程来执行(CallerRunsPolicy)
回答了一下我们使用 redis 做缓存和登录 session 存在的场景,以及 redis 是单线程的。
1、完全基于内存,大多数请求都是内存操作,非常快速; 2、数据结构简单,操作简单; 3、采用单线程,避免了不必要的上下文切换和竞争条件,不存在多进程或者多线程的切换,不用考虑锁带来的性能消耗; 4、使用多路 I/O复用模型,非阻塞 IO
关于 zk 和 dubbo 这块用的不多,zk 主要是在使用 kafka 的时候会用到,但是不涉及原理上面的研究。dubbo 虽然项目中有用过,但是并不是很深入,就没说用过,直接说没用过。
幂等性是数学上的含义是对于参数 x,f(x)=f(f(x));比如绝对值函数。 在分布式环境下表示的是对于同样的请求,在一次或者多次请求的情况下对系统的使用资源是一样的。保证失败重试不会导致提交两次。 方法: 带版本号的方式; 采用数据库唯一索引方式;
我们常用的数据库是 MySQL,所以就回答了 MySQL。
首先事务是作为单个逻辑工作单元执行的一系列操作,这些操作作为一个整体一起向系统提交,要么都执行,要么都不执行。事务是一个不可分割的逻辑单元。
(原子性)事务的各步操作是不可分的,保证一系列的操作要么都完成,要么都不完成;(一致性)事务完成,数据必须处于一致的状态;(隔离性)对数据进行修改的所有并发事务彼此之间是相互隔离,这表明事务必须是独立的,不应以任何方式依赖或影响其他事务;(持久性)表示事务对数据处理结束后,对数据更改必须持久化,不管是事务成功还是回滚。事务日志都能够保持事务的永久性。首先这题没有 get 的面试官想问的点是什么,所以就根据自己项目本身的情况做答了。我们项目生产上的数据库是有主备的,在主数据库挂掉的情况下是会切换到备数据库,先保证业务的稳定性,然后在对崩溃现场进行保留,方便后续分析问题,找到原因。这里面试官追问了一下,我们主备的切换是自动的还是手动的,这个由于是公司运维团队负责的,自己本身不是特别清楚,但是根据对公司运维团队的了解,应该是自动的。所以就这样如实的回答了。
数据库在写入数据之前是先讲对数据的改动写入 redo log 和 undo log,然后在操作数据,如果成功提交事务就会讲操作写入磁盘;如果失败就会根据redo log 和 undo log 逆向还原到事务操作之前的状态。
我这边根据具体的工具经理,回答的是 kafka 的初次使用,因为当时是公司内部第一个引入 kafka,之前没有小组使用过,所以要采很多坑。并且那个时候 kafka 还没有发布1.0版本,官网和网上提供的版本很杂乱不兼容。
首先 TCP是面向连接的传输协议。主要通过消息确认和重试机制来保证数据传输的可靠性。
二面的时间是在第二周,周四下午的时候打电话过来,问是否可以面试。但是当时在上班就说不方便,能否周五晚上面试。面试官说可以。谁知道,第二天中午还没下班就打电话过来说面试,可能本来周五大家各自事情都多吧,他也想尽快搞完。我这边被突然的面试电话给搞懵了一下,想着不是约好了晚上么,怎么搞突击。。。但是没办法,已经推过一次,没好意思再推掉。就说了我要找个安静地方,稍等下。 整个面试过程不是很好,主要是在公司内部找了个没人的地方,说话声音都不敢大,而且还经常有人经过,来来回回的。感觉这点没有决策好,也是这次的一个遗憾。所以大家电话面试的时候一定要找个没人的地方。
根据个人经历说了自己所做的项目,以及流程和架构方面,因为是自己参与的项目,所以整个流程说的还是很流畅的。毕竟自己很熟悉。这块尽量多从几个方面讲,流程,架构,设计等。
理想情况下是 O(1)的,但是实际中会出现 hash 碰撞,导致无法达到效果。
LinkedList 底层是基于双向链表实现的,而 ArrayList 底层是基于动态数组实现的;
查询的时候 LinkedList 的效率要低于 ArrayList,因为 LinkedList 需要遍历链表,而 ArrayList 底层数组根据下标直接获取数据。插入删除数据的时候,LinkedList 效率比ArrayList 效率高,因为 ArrayList 在数据多的情况下会进行数组扩容或移动数组。多进程与多线程在编程上面有什么需要注意的首先进程是资源分配的最小单元,线程是任务调度的最小单元
ThreadLocal 适用于每个线程需要自己独立的实例且该实例需要在多个方法中被使用,也即变量在线程间隔离而在方法或类间共享的场景。
堆内存是线程共享的,栈内存是线程私有的; 堆内存用来存放由new创建的对象和数组,栈内存中存放一些基本类型的变量和对象的引用变量;
1)数据库层面上: 除了主键索引,唯一索引之外,对于常用的查询字段也要加索引。查询的时候尽量使用主键索引,因为MySQL 的 InnoDB 的主键索引索引的是整行数据,而普通索引索引的是主键,会有回表操作。当然索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率,需要酌情考虑。 2、优化查询语句,尽量采用确认性查询语句,减少 or,in,not in,%xxx%语法的使用。 2)应用层面上:
采用缓存机制,将常用的数据进行缓存,增加访问速度;分库分表,读写分离,将数据分开读写,提升性能强一致性:对于更新后的数据,要求后续所有节点的任何操作都要获取最新值的情况; 弱一致性:对于更新后的数据,后续节点的数据操作可以是新值,也可以是旧值,通过一段时间后后续节点对数据的操作都是新值; 最终一致性:是弱一致性的特殊形式,存储系统保证在没有新的更新的条件下,最终所有的访问都是最后更新的值。
思路:首先考察的肯定是大数据处理方案,这些数据肯定不能一次性读取到内存,那就需要拆分,将数据分隔处理。假设要分隔为 n 个文件。
分隔:如果 ID 是整型的话,可以直接采用取模(id % n)的方式;如果 ID 是字符串可以先计算 hash 值然后再取模(hash(x) % n)的方式,将相同 ID 的商品分到同一个文件中。
针对每个小文件进行 top100的排序,返回购买最多的100个商品 ID•根据 n 个文件中的100个 ID,在进行一次排序,即可得到需要的数据。
首先很感谢内推的那个朋友才有了这次的面试机会,虽然结果不尽人意,但是为自己的学习成长之旅增加了一些精彩。 然后说下这次的面试体验,总得来说,感觉不是很好,因为几次打电话都是在公司上班期间,毕竟在公司接到面试电话还是很不好的。没有按照约定的时间点打电话,可能是我接触的少,不知道其他公司是怎么样的,总觉得这样不太好。
身为一个目前在职三年,工作在深圳这样的大环境下,还是有很大压力的。以前上学的时候想着什么时候能月入过万应该就不愁什么的,但是渐渐的发现,及时月入过万也还是过不好生活。周围比你厉害比你强的人多了去了,你能做的就只有不断的学习,不断的进步。
所有的面试题目都不是一成不变的,像蚂蚁的面试真题只是给大家一个借鉴作用,最主要的是给自己增加知识的储备,有备无患。
最后给大家分享:Java面试题总结+各知识点学习思维导图 点点我:领取方式:csdn
到此这篇关于记一次蚂蚁金服的面试经历(小结)的文章就介绍到这了。