2019ICPC徐州区域赛 E.Multiply

    技术2022-07-10  96

    链接

    点击跳转

    题解

    ∑ a i < Y \sum a_i < Y ai<Y也就意味着 ∏ a i ! < Y \prod a_i! < Y ai!<Y

    所以答案至少是 0 0 0

    那么我只需要对 X X X分解质因数,然后看一下每个质因数还能允许我容纳几个 x x x就可以了

    分解质因数用Pollard Rho算法

    代码

    #include <bits/stdc++.h> #include <ext/pb_ds/assoc_container.hpp> #include <ext/pb_ds/tree_policy.hpp> #define iinf 0x3f3f3f3f #define linf (1ll<<60) #define eps 1e-8 #define maxn 1000010 #define maxe 1000010 #define cl(x) memset(x,0,sizeof(x)) #define rep(i,a,b) for(i=a;i<=b;i++) #define drep(i,a,b) for(i=a;i>=b;i--) #define em(x) emplace(x) #define emb(x) emplace_back(x) #define emf(x) emplace_front(x) #define fi first #define se second #define de(x) cerr<<#x<<" = "<<x<<endl using namespace std; using namespace __gnu_pbds; typedef long long ll; typedef pair<int,int> pii; typedef pair<ll,ll> pll; ll read(ll x=0) { ll c, f(1); for(c=getchar();!isdigit(c);c=getchar())if(c=='-')f=-f; for(;isdigit(c);c=getchar())x=x*10+c-0x30; return f*x; } struct Pollard_Rho { ll md(ll x, ll p){while(x>p)x-=p;return x;} ll mult(ll a, ll b, ll p) { ll ans=0, t=a; for(;b;b>>=1,t=md(t+t,p))if(b&1)ans=md(ans+t,p); return ans; } ll pow(ll a, ll b, ll p) { ll ans=1, t=a; for(;b;b>>=1,t=mult(t,t,p))if(b&1)ans=mult(ans,t,p); return ans; } bool MR(ll n) { ll a, t, u, i, x, y, tim=20; if(n==2)return true; if(~n&1)return false; if(n==3 or n==5)return true; if(n%3==0 or n%5==0)return false; for(t=0,u=n-1;~u&1;u>>=1,t++); while(tim--) { a=rand()%(n-1)+1; for(y=x=pow(a,u,n),i=1;i<=t;i++) { x=mult(x,x,n); if(x==1 and y!=n-1 and y!=1)return false; y=x; } if(x!=1)return false; } return true; } ll pollard_rho(ll n, ll c) { ll i, k, x=rand()%n, y=x, d; for(i=1,k=2;;i++) { x=(mult(x,x,n)+c)%n; d=__gcd(y>x?y-x:x-y,n); if(d>1 and d<n)return d; if(x==y)return n; if(i==k)y=x,k<<=1; } } void find(ll n, ll c, map<ll,ll>& ans) { if(n==1)return; if(MR(n)){ans[n]++;return;} ll p=pollard_rho(n,c); for(;p==n;c++)p=pollard_rho(n,c); find(p,c,ans), find(n/p,c,ans); } map<ll,ll> run(ll n) { map<ll,ll> ans; find(n,1,ans); return ans; } }; int main() { ll T=read(); Pollard_Rho PR; while(T--) { ll N=read(), X=read(), Y=read(), i; vector<ll> a(N+5); rep(i,1,N)a[i]=read(); auto lis = PR.run(X); ll ans=linf; for(auto pr:lis) { ll cnt=0; rep(i,1,N) { ll t=a[i], p=0; while(t) { p += t/pr.first; t/=pr.first; } cnt -= p; } ll t=Y, p=0; while(t) { p += t/pr.first; t/=pr.first; } cnt += p; ans = min(ans,cnt/pr.second); } printf("%lld\n",ans); } return 0; }
    Processed: 0.011, SQL: 9