【CVPR 2020】神经网络架构搜索(NAS)论文和代码汇总

    技术2022-07-12  100

    关注上方“深度学习技术前沿”,选择“星标公众号”,

    技术干货,第一时间送达!

    【导读】今天给大家整理了CVPR2020录用的几篇神经网络架构搜索方面的论文,神经网络架构搜索又称为Neural Architecture Search,简称(NAS)。神经网络架构搜索在这两年比较热门,学术界和国内外知名企业都在做这方面的研究。之后,本公众号后续将出一个NAS方面的专辑,主要包括NAS的发展历程、论文解读和应用场景。希望大家多多关注!

    论文汇总

    1.Blockwisely Supervised Neural Architecture Search with Knowledge Distillation(该论文在ImageNet数据集进行训练得到了78.4% top-1 accuracy ,比EfficientNet-B0高了2.1%个点)

    作者团队:暗物智能、Monash 大学、中山大学

    论文链接:https://arxiv.org/abs/1911.13053

    2. Semi-Supervised Neural Architecture Search

    作者团队:MSRA、中科大

    论文链接:https://arxiv.org/abs/2002.10389

    代码地址:https://github.com/renqianluo/SemiNAS

    3. CARS: Continuous Evolution for Efficient Neural Architecture Search

    作者团队:北大、华为诺亚、鹏城实验室、悉尼大学

    论文链接:https://arxiv.org/abs/1909.04977

    代码(即将开源):https://github.com/huawei-noah/CARS

    4. Densely Connected Search Space for More Flexible Neural Architecture Search

    论文链接:https://arxiv.org/abs/1906.09607

    代码地址:https://github.com/JaminFong/DenseNAS

    5. AdversarialNAS: Adversarial Neural Architecture Search for GANs

    论文链接:https://arxiv.org/pdf/1912.02037.pdf

    代码地址:https://github.com/chengaopro/AdversarialNAS

    6. Hit-Detector: Hierarchical Trinity Architecture Search for Object Detection

    作者团队:北大、华为诺亚、悉尼大学

    论文链接:https://arxiv.org/pdf/2003.11818.pdf

    代码地址:https://github.com/ggjy/HitDet.pytorch

    7. AOWS: Adaptive and optimal network width search with latency constraints

    论文链接:https://arxiv.org/abs/2005.10481

    代码地址:https://github.com/bermanmaxim/AOWS

    8. MTL-NAS: Task-Agnostic Neural Architecture Search towards General-Purpose Multi-Task Learning

    论文:https://arxiv.org/abs/2003.14058

    代码:https://github.com/bhpfelix/MTLNAS

    9. Neural Architecture Search for Lightweight Non-Local Networks

    论文:https://arxiv.org/abs/2004.01961

    代码:https://github.com/LiYingwei/AutoNL

    10. SGAS: Sequential Greedy Architecture Search

    作者团队:KAUST, Intel

    论文链接:https://arxiv.org/pdf/1912.00195.pdf

    代码地址:https://www.deepgcns.org/auto/sgas

    11. GreedyNAS: Towards Fast One-Shot NAS with Greedy Supernet

    作者团队:商汤、清华、Dian、华科

    论文链接:https://arxiv.org/abs/2003.11236

    12. FBNetV2: Differentiable Neural Architecture Search for Spatial and Channel Dimensions(UC Berkley, Facebook)

    论文链接:https://arxiv.org/abs/2004.05565

    代码地址:https://github.com/facebookresearch/mobile-vision

    13. MiLeNAS: Efficient Neural Architecture Search via Mixed-Level Reformulation

    作者团队:南加州、腾讯、港中文、港科大

    论文链接:https://arxiv.org/abs/2003.12238

    代码地址:https://github.com/chaoyanghe/MiLeNAS

    14. Designing Network Design Spaces

    作者团队:Facebook FAIR(何凯明团队)

    论文链接:https://arxiv.org/abs/2003.13678

    15. Search to Distill: Pearls are Everywhere but not the Eyes

    作者团队:Google,港中文

    论文链接:https://arxiv.org/abs/1911.09074

    16. EcoNAS: Finding Proxies for Economical Neural Architecture Search

    作者团队:悉尼大学,南洋理工,商汤

    论文链接:https://arxiv.org/abs/2001.01233

    17.DSNAS: Direct Neural Architecture Search without Parameter Retraining

    作者团队:港中文、UCLA、剑桥、商汤

    论文链接:https://arxiv.org/abs/2002.09128

    18.MobileDets: Searching for Object Detection Architectures for Mobile Accelerators

    论文作者:谷歌、威斯康星大学麦迪逊分校

    论文链接:https://arxiv.org/abs/2004.14525

    19. Rethinking Performance Estimation in Neural Architecture Search

    论文:https://arxiv.org/abs/2005.09917

    代码:https://github.com/zhengxiawu/rethinking_performance_estimation_in_NAS

    解读1:https://www.zhihu.com/question/372070853/answer/1035234510

    解读2:https://zhuanlan.zhihu.com/p/111167409

    20. When NAS Meets Robustness: InSearchof RobustArchitecturesagainst Adversarial Attacks

    作者团队:港中文、 MIT

    论文链接:https://arxiv.org/abs/1911.10695

    代码地址:https://github.com/gmh14/RobNets


    NAS系列文章

    (点击标题可跳转阅读)

    50+篇《神经架构搜索NAS》2020论文合集

    【AAAI 2020】NAS+目标检测:SM-NAS 论文解读

    谷歌 NAS + 目标检测:SpineNet论文详解

    比可微架构搜索DARTS快10倍,第四范式提出优化NAS算法

    重磅!DLer-NAS交流群已成立!

    欢迎各位Cver加入NAS微信交流群,本群旨在交流模型压缩/量化/剪枝、NAS、迁移学习、自监督学习、无监督学习、元学习等内容。欢迎对这些研究方向感兴趣的小伙伴加群一起交流学习!

    加群请备注:研究方向+学校/公司+昵称(如NAS+上交+小明)

    ???? 长按识别添加,邀请您进群!

    Processed: 0.009, SQL: 9