输入一个n行m列的整数矩阵,再输入q个询问,每个询问包含四个整数x1, y1, x2, y2,表示一个子矩阵的左上角坐标和右下角坐标。
对于每个询问输出子矩阵中所有数的和。
输入格式 第一行包含三个整数n,m,q。
接下来n行,每行包含m个整数,表示整数矩阵。
接下来q行,每行包含四个整数x1, y1, x2, y2,表示一组询问。
输出格式 共q行,每行输出一个询问的结果。
数据范围 1≤n,m≤1000, 1≤q≤200000, 1≤x1≤x2≤n, 1≤y1≤y2≤m, −1000≤矩阵内元素的值≤1000 输入样例: 3 4 3 1 7 2 4 3 6 2 8 2 1 2 3 1 1 2 2 2 1 3 4 1 3 3 4 输出样例: 17 27 21
原理是离散数学的容斥原理。
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.io.StreamTokenizer; public class Main { public static void main(String[] args) throws IOException { StreamTokenizer in = new StreamTokenizer(new BufferedReader( new InputStreamReader(System.in))); PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out)); in.nextToken(); int n = (int) in.nval; in.nextToken(); int m = (int) in.nval; in.nextToken(); int q = (int) in.nval; int s[][] = new int[n + 1][m + 1]; for (int i = 1; i <= n; i++) { for (int j = 1; j <= m; j++) { in.nextToken(); s[i][j] = s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1] + (int) in.nval; } } for (int i = 0; i < q; i++) { in.nextToken(); int x1 = (int) in.nval; in.nextToken(); int y1 = (int) in.nval; in.nextToken(); int x2 = (int) in.nval; in.nextToken(); int y2 = (int) in.nval; out.println(s[x2][y2] - s[x2][y1 - 1] - s[x1 - 1][y2] + s[x1 - 1][y1 - 1]); } out.flush(); } }