手写单通道的pooling

    技术2022-07-13  76

    max pooling 横向和纵向的step分别是m,n, data[i:i+m,j:j+n]个块中取最大值(max pooling)。 new_img_w = (w -kernel +2*padding)/ step + 1 import numpy as np import cv2 as cv def pooling(data, m, n): print(data.shape) h, w = data.shape[:2] img_new = [] for i in range(0, h, m): line = [] for j in range(0, w, n): x = data[i:i+m, j:j+n] line.append(np.max(x)) img_new.append(line) return np.array(img_new) im_bgr = cv.imread("/home/alex/Pictures/lizixuan.jpg") b, g, r = cv.split(im_bgr) im_bgr = pooling(r, 2, 2) # cv.imshow("", im_bgr); cv.waitKey() cv.imshow("", im_bgr); cv.waitKey() avg pooling def pooling(data, m, n): a,b = data.shape img_new = [] for i in range(0,a,m): line = [] for j in range(0,b,n): x = data[i:i+m,j:j+n]#选取池化区域 line.append(np.sum(x)/(n*m)) img_new.append(line) return np.array(img_new)

    2*2的pooling输出尺寸变化>> (1368, 1080) (684, 540)

    Processed: 0.010, SQL: 9