线性代数知识课笔记1

    技术2022-07-13  94

    笔记内容摘自 猴博士爱讲课@B站 https://www.bilibili.com/video/BV1hs411e7X8?p=4

    行列式

    行列式的计算

    行列式分为2阶、3阶、4阶……n阶等,其中2阶的计算方法为: ∣ 1 3 2 6 ∣ \begin{vmatrix}1&3\\2&6\end{vmatrix} 1236

    计算方法为对角线相乘求差,即 1 ∗ 6 − 2 ∗ 3 = 0 1*6 - 2*3 = 0 1623=0 对于3阶及以上的,责需要经过对行列式进行变换后再进行计算,例如: ∣ 1 2 3 2 3 4 4 5 7 ∣ ⟶ R 2 − 2 R 1 = ∣ 1 2 3 2 − 1 ∗ 2 3 − 2 ∗ 2 4 − 3 ∗ 2 4 5 7 ∣ = ∣ 1 2 3 0 − 1 − 2 4 5 7 ∣ ⟶ R 3 − 4 R 1 = ∣ 1 2 3 0 − 1 − 2 4 − 4 ∗ 1 5 − 4 ∗ 2 7 − 4 ∗ 3 ∣ = ∣ 1 2 3 0 − 1 − 2 0 − 3 − 5 ∣ ⟶ R 3 − 3 R 2 = ∣ 1 2 3 0 − 1 − 2 0 − 3 − 3 ∗ ( − 1 ) − 5 − 3 ∗ ( − 2 ) ∣ = ∣ 1 2 3 0 − 1 − 2 0 0 1 ∣ = 1 ∗ ( − 1 ) ∗ 1 = − 1 \begin{vmatrix}1&2&3\\2&3&4\\4&5&7\end{vmatrix} \\ \overset{R_2-2R_1}{\longrightarrow}=\begin{vmatrix}1&2&3\\2-1*2&3-2*2&4-3*2\\4&5&7\end{vmatrix} =\begin{vmatrix}1&2&3\\0&-1&-2\\4&5&7\end{vmatrix} \\ \overset{R_3-4R_1}{\longrightarrow}=\begin{vmatrix}1&2&3\\0&-1&-2\\4-4*1&5-4*2&7-4*3\end{vmatrix} =\begin{vmatrix}1&2&3\\0&-1&-2\\0&-3&-5\end{vmatrix} \\ \overset{R_3-3R_2}{\longrightarrow}=\begin{vmatrix}1&2&3\\0&-1&-2\\0&-3-3*(-1)&-5-3*(-2)\end{vmatrix} =\begin{vmatrix}1&2&3\\0&-1&-2\\0&0&1\end{vmatrix} \\ = 1 * (-1) * 1 \\ =-1 124235347R22R1=121242322534327=104215327R34R1=104412154232743=100213325R33R2=1002133(1)3253(2)=100210321=1(1)1=1

    性质1:某行(列)加上或减去领一行(列)的几倍,行列式不变

    上述3阶的计算过程也可以简化为: ∣ 1 2 3 2 3 4 4 5 7 ∣ → R 2 − 2 R 1 → R 3 − 4 R 1 → R 3 − 3 R 2 ∣ 1 2 3 0 − 1 − 2 0 0 1 ∣ = 1 ∗ ( − 1 ) ∗ 1 = − 1 \begin{vmatrix}1&2&3\\2&3&4\\4&5&7\end{vmatrix} \begin{matrix}\xrightarrow{R_2-2R_1} \\ \xrightarrow{R_3-4R_1} \\ \xrightarrow{R_3-3R_2} \end{matrix} \begin{vmatrix}1&2&3\\0&-1&-2\\0&0&1\end{vmatrix} \\ =1*(-1)*1 \\ =-1 124235347R22R1 R34R1 R33R2 100210321=1(1)1=1

    扩展一个4阶的行列式算一下 ∣ 1 2 3 4 2 3 4 5 4 5 7 8 8 9 12 12 ∣ → R 2 − 2 R 1 → R 3 − 4 R 1 → R 4 − 8 R 1 ∣ 1 2 3 4 0 − 1 − 2 − 3 0 − 3 − 5 − 8 0 − 7 − 12 − 20 ∣ → R 3 − 3 R 2 → R 4 − 7 R 2 ∣ 1 2 3 4 0 − 1 − 2 − 3 0 0 1 1 0 0 2 1 ∣ → R 4 − 2 R 3 ∣ 1 2 3 4 0 − 1 − 2 − 3 0 0 1 1 0 0 0 − 1 ∣ = 1 ∗ ( − 1 ) ∗ 1 ∗ ( − 1 ) = 1 \begin{vmatrix}1&2&3&4\\2&3&4&5\\4&5&7&8\\8&9&12&12\end{vmatrix} \begin{matrix} \xrightarrow{R_2-2R_1} \\ \xrightarrow{R_3-4R_1} \\ \xrightarrow{R_4-8R_1} \end{matrix} \begin{vmatrix}1&2&3&4\\0&-1&-2&-3\\0&-3&-5&-8\\0&-7&-12&-20\end{vmatrix} \begin{matrix} \xrightarrow{R_3-3R_2} \\ \xrightarrow{R_4-7R_2} \end{matrix} \begin{vmatrix}1&2&3&4\\0&-1&-2&-3\\0&0&1&1\\0&0&2&1\end{vmatrix} \begin{matrix} \xrightarrow{R_4-2R_3} \end{matrix} \begin{vmatrix}1&2&3&4\\0&-1&-2&-3\\0&0&1&1\\0&0&0&-1\end{vmatrix} \\ =1*(-1)*1*(-1) \\ =1 124823593471245812R22R1 R34R1 R48R1 100021373251243820R33R2 R47R2 1000210032124311R42R3 1000210032104311=1(1)1(1)=1

    性质2:某行(列)乘k,等于k乘此行列式

    例: 已知 ∣ 1 2 3 4 2 3 4 5 4 5 7 8 8 9 10 12 ∣ = − 1 ,求 ∣ 2 4 6 8 2 3 4 5 4 5 7 8 8 9 10 12 ∣ \text{已知} \begin{vmatrix}1&2&3&4\\2&3&4&5\\4&5&7&8\\8&9&10&12\end{vmatrix}= -1 \text{,求} \begin{vmatrix}2&4&6&8\\2&3&4&5\\4&5&7&8\\8&9&10&12\end{vmatrix} 已知124823593471045812=1,求224843596471085812 观察发现,第一行{2,4,6,8}是{1,2,3,4}的2倍,即 ∣ 2 4 6 8 2 3 4 5 4 5 7 8 8 9 10 12 ∣ = 2 ∗ ∣ 1 2 3 4 2 3 4 5 4 5 7 8 8 9 10 12 ∣ = 2 ∗ ( − 1 ) = − 2 \begin{vmatrix}2&4&6&8\\2&3&4&5\\4&5&7&8\\8&9&10&12\end{vmatrix} =2 *\begin{vmatrix}1&2&3&4\\2&3&4&5\\4&5&7&8\\8&9&10&12\end{vmatrix} =2*(-1) = -2 224843596471085812=2124823593471045812=2(1)=2

    ∣ 2 4 6 8 2 3 4 5 12 15 21 24 8 9 10 12 ∣ = 2 ∗ 3 ∗ ∣ 1 2 3 4 2 3 4 5 4 5 7 8 8 9 10 12 ∣ = 2 ∗ 3 ∗ ( − 1 ) = − 6 \begin{vmatrix}2&4&6&8\\2&3&4&5\\12&15&21&24\\8&9&10&12\end{vmatrix} =2*3*\begin{vmatrix}1&2&3&4\\2&3&4&5\\4&5&7&8\\8&9&10&12\end{vmatrix} =2*3*(-1)=-6 2212843159642110852412=23124823593471045812=23(1)=6

    性质3:互换两行(列),行列式变号

    例1: ∣ 2 3 4 5 1 2 3 4 4 5 7 8 8 9 10 12 ∣ → R 1 < − > R 2 − 1 ∗ ∣ 1 2 3 4 2 3 4 5 4 5 7 8 8 9 10 12 ∣ = − 1 ∗ ( − 1 ) = 1 \begin{vmatrix}2&3&4&5\\1&2&3&4\\4&5&7&8\\8&9&10&12\end{vmatrix} \begin{matrix}\xrightarrow{R_1<->R_2}\end{matrix} -1*\begin{vmatrix}1&2&3&4\\2&3&4&5\\4&5&7&8\\8&9&10&12\end{vmatrix} = -1*(-1) = 1 214832594371054812R1<>R2 1124823593471045812=1(1)=1 例2: ∣ 0 0 0 3 0 0 3 2 1 2 3 4 0 5 2 4 ∣ → R 1 < − > R 4 − 1 ∗ ∣ 0 5 2 4 0 0 3 2 1 2 3 4 0 0 0 3 ∣ → R 2 < − > R 3 − 1 ∗ ( − 1 ) ∣ 0 5 2 4 1 2 3 4 0 0 3 2 0 0 0 3 ∣ → R 1 < − > R 2 − 1 ∗ ( − 1 ) ∗ ( − 1 ) ∣ 1 2 3 4 0 5 2 4 0 0 3 2 0 0 0 3 ∣ = − 1 ∗ ( − 1 ) ∗ ( − 1 ) ∗ 1 ∗ 5 ∗ 3 ∗ 3 = − 45 \begin{vmatrix}0&0&0&3\\0&0&3&2\\1&2&3&4\\0&5&2&4\end{vmatrix} \begin{matrix} \xrightarrow{R_1<->R_4} \end{matrix} -1*\begin{vmatrix}0&5&2&4\\0&0&3&2\\1&2&3&4\\0&0&0&3\end{vmatrix} \begin{matrix} \xrightarrow{R_2<->R_3} \end{matrix} -1*(-1)\begin{vmatrix}0&5&2&4\\1&2&3&4\\0&0&3&2\\0&0&0&3\end{vmatrix} \\ \begin{matrix} \xrightarrow{R_1<->R_2} \end{matrix} -1*(-1)*(-1)\begin{vmatrix}1&2&3&4\\0&5&2&4\\0&0&3&2\\0&0&0&3\end{vmatrix} \\ =-1*(-1)*(-1)*1*5*3*3= -45 0010002503323244R1<>R4 10010502023304243R2<>R3 1(1)0100520023304423R1<>R2 1(1)(1)1000250032304423=1(1)(1)1533=45

    常用的几种行列式运算题型

    1/7 对称的N行N列计算

    ∣ x a ⋯ a a x ⋯ a ⋮ ⋮ ⋱ ⋮ a a ⋯ x ∣ = ( x − a ) ( n − 1 ) [ x + ( n − 1 ) a ] \begin{vmatrix}x&a&\cdots&a\\a&x&\cdots&a\\\vdots&\vdots&\ddots&\vdots\\a&a&\cdots&x\end{vmatrix} =(x-a)^{(n-1)}[x+(n-1)a] xaaaxaaax=(xa)(n1)[x+(n1)a]

    例1:请计算如下行列式的值 ∣ 2 3 3 3 3 2 3 3 3 3 2 3 3 3 3 2 ∣ 即 x = 2        a = 3        n = 4 , 代 入 以 上 公 式 可 得 ∣ 2 3 3 3 3 2 3 3 3 3 2 3 3 3 3 2 ∣ = ( 2 − 3 ) ( 4 − 1 ) [ 2 + ( 4 − 1 ) ∗ 3 ] = − 11 \begin{vmatrix} 2&3&3&3\\3&2&3&3\\3&3&2&3\\3&3&3&2 \end{vmatrix} \\即 x=2 ~\ ~\ ~\ a=3 ~\ ~\ ~\ n =4,代入以上公式可得 \\ \begin{vmatrix} 2&3&3&3\\3&2&3&3\\3&3&2&3\\3&3&3&2 \end{vmatrix} =(2-3)^{(4-1)}[2+(4-1)*3] =-11 2333323333233332x=2      a=3      n=4,2333323333233332=(23)(41)[2+(41)3]=11

    2/7 指数递增行列式求解

    ∣ 1 1 ⋯ 1 x 1 x 2 ⋯ x n x 1 2 x 2 2 ⋯ x n 2 ⋮ ⋮ ⋱ ⋮ x 1 n − 1 x 2 n − 1 ⋯ x n n − 1 ∣ = ( x n − x n − 1 ) ( x n − x n − 2 ) ( x n − x n − 3 ) ⋯ ⋯ ( x n − x 1 ) ∗ ( x n − 1 − x n − 2 ) ( x n − 1 − x n − 3 ) ⋯ ⋯ ( x n − 1 − x 1 ) ∗ ⋯ ⋯ ∗ ( x 2 − x 1 ) \begin{vmatrix} 1&1&\cdots&1\\x_1&x_2&\cdots&x_n\\x_1^2&x_2^2&\cdots&x_n^2\\\vdots&\vdots&\ddots&\vdots\\x_1^{n-1}&x_2^{n-1}&\cdots&x_n^{n-1} \end{vmatrix} \\=(x_n-x_{n-1})(x_n-x_{n-2})(x_n-x_{n-3})\cdots\cdots(x_n-x_1) \\*(x_{n-1}-x_{n-2})(x_{n-1}-x_{n-3})\cdots\cdots(x_{n-1}-x_1) \\*\cdots\cdots \\*(x_2-x_1) 1x1x12x1n11x2x22x2n11xnxn2xnn1=(xnxn1)(xnxn2)(xnxn3)(xnx1)(xn1xn2)(xn1xn3)(xn1x1)(x2x1)

    例2:请计算如下行列式的值 ∣ 1 1 1 1 3 4 5 6 3 2 4 2 5 2 6 2 3 3 4 3 5 3 6 3 ∣ 即 x 1 = 3        x 2 = 4        x 3 = 5        x 4 = 6        n = 4 , 代 入 以 上 公 式 可 得 ( x 4 − x 3 ) ( x 4 − x 2 ) ( x 4 − x 1 ) ( x 3 − x 2 ) ( x 3 − x 1 ) ( x 2 − x 1 ) = ( 6 − 5 ) ∗ ( 6 − 4 ) ∗ ( 6 − 3 ) ∗ ( 5 − 4 ) ∗ ( 5 − 3 ) ∗ ( 4 − 3 ) = 12 \begin{vmatrix} 1&1&1&1\\3&4&5&6\\3^2&4^2&5^2&6^2\\3^3&4^3&5^3&6^3 \end{vmatrix} \\即 x_1=3 ~\ ~\ ~\ x_2=4 ~\ ~\ ~\ x_3=5 ~\ ~\ ~\ x_4=6 ~\ ~\ ~\ n=4,代入以上公式可得 \\(x_4-x_3)(x_4-x_2)(x_4-x_1)(x_3-x_2)(x_3-x_1)(x_2-x_1) \\=(6-5)*(6-4)*(6-3)*(5-4)*(5-3)*(4-3) \\=12 133233144243155253166263x1=3      x2=4      x3=5      x4=6      n=4(x4x3)(x4x2)(x4x1)(x3x2)(x3x1)(x2x1)=(65)(64)(63)(54)(53)(43)=12

    3/7 特殊行列式计算

    ①两行(列)相同或者成比例时,行列式为0

    ②某行(列)为两项相加相减时,行列式可拆解成两个行列式相加减

    例3:请计算如下行列式的值 已知 ∣ a 1 b 1 c 1 a 2 b 2 c 2 a 3 b 3 c 3 ∣ = 1 , 试 求 ∣ a 1 + c 1 b 1 a 1 + b 1 a 2 + c 2 b 2 a 2 + b 2 a 3 + c 3 b 3 a 3 + b 3 ∣ ∣ a 1 + c 1 b 1 a 1 + b 1 a 2 + c 2 b 2 a 2 + b 2 a 3 + c 3 b 3 a 3 + b 3 ∣ = ∣ a 1 b 1 a 1 + b 1 a 2 b 2 a 2 + b 2 a 3 b 3 a 3 + b 3 ∣ + ∣ c 1 b 1 a 1 + b 1 c 2 b 2 a 2 + b 2 c 3 b 3 a 3 + b 3 ∣ = ∣ a 1 b 1 a 1 a 2 b 2 a 2 a 3 b 3 a 3 ∣ + ∣ a 1 b 1 b 1 a 2 b 2 b 2 a 3 b 3 b 3 ∣ + ∣ c 1 b 1 a 1 c 2 b 2 a 2 c 3 b 3 a 3 ∣ + ∣ c 1 b 1 b 1 c 2 b 2 b 2 c 3 b 3 b 3 ∣ = 0 + 0 + ∣ c 1 b 1 a 1 c 2 b 2 a 2 c 3 b 3 a 3 ∣ + 0 = − 1 ∗ ∣ a 1 b 1 c 1 a 2 b 2 c 2 a 3 b 3 c 3 ∣ = − 1 ∗ 1 = − 1 \text{已知} \begin{vmatrix} a_1&b_1&c_1\\a_2&b_2&c_2\\a_3&b_3&c_3 \end{vmatrix} =1,试求 \begin{vmatrix} a_1+c_1&b_1&a_1+b_1\\a_2+c_2&b_2&a_2+b_2\\a_3+c_3&b_3&a_3+b_3 \end{vmatrix} \\ \begin{vmatrix} a_1+c_1&b_1&a_1+b_1\\a_2+c_2&b_2&a_2+b_2\\a_3+c_3&b_3&a_3+b_3 \end{vmatrix} =\begin{vmatrix} a_1&b_1&a_1+b_1\\a_2&b_2&a_2+b_2\\a_3&b_3&a_3+b_3 \end{vmatrix}+ \begin{vmatrix} c_1&b_1&a_1+b_1\\c_2&b_2&a_2+b_2\\c_3&b_3&a_3+b_3 \end{vmatrix} \\ =\begin{vmatrix} a_1&b_1&a_1\\a_2&b_2&a_2\\a_3&b_3&a_3 \end{vmatrix}+ \begin{vmatrix} a_1&b_1&b_1\\a_2&b_2&b_2\\a_3&b_3&b_3 \end{vmatrix}+ \begin{vmatrix} c_1&b_1&a_1\\c_2&b_2&a_2\\c_3&b_3&a_3 \end{vmatrix}+ \begin{vmatrix} c_1&b_1&b_1\\c_2&b_2&b_2\\c_3&b_3&b_3 \end{vmatrix} \\ =0+0+\begin{vmatrix} c_1&b_1&a_1\\c_2&b_2&a_2\\c_3&b_3&a_3 \end{vmatrix}+0 =-1*\begin{vmatrix} a_1&b_1&c_1\\a_2&b_2&c_2\\a_3&b_3&c_3 \end{vmatrix}=-1*1=-1 已知a1a2a3b1b2b3c1c2c3=1a1+c1a2+c2a3+c3b1b2b3a1+b1a2+b2a3+b3a1+c1a2+c2a3+c3b1b2b3a1+b1a2+b2a3+b3=a1a2a3b1b2b3a1+b1a2+b2a3+b3+c1c2c3b1b2b3a1+b1a2+b2a3+b3=a1a2a3b1b2b3a1a2a3+a1a2a3b1b2b3b1b2b3+c1c2c3b1b2b3a1a2a3+c1c2c3b1b2b3b1b2b3=0+0+c1c2c3b1b2b3a1a2a3+0=1a1a2a3b1b2b3c1c2c3=11=1

    4/7 求余子式、代数余子式

    例4: 试 求 ∣ 1 2 3 5 6 7 9 10 11 ∣ 中 a 23 的 余 子 式 , a 12 的 代 数 余 子 式 试求 \begin{vmatrix} 1&2&3\\5&6&7\\9&10&11 \end{vmatrix} 中 a_{23}的余子式,a_{12}的代数余子式 15926103711a23a12

    余子式M: M 23 = ∣ 1 2 9 10 ∣ = − 8 M_{23}= \begin{vmatrix} 1&2\\9&10 \end{vmatrix} =-8 M23=19210=8 代数余子式A: A 12 = ( − 1 ) 1 + 2 M 12 = ( − 1 ) 3 ∗ ∣ 5 7 9 11 ∣ = − 1 ∗ ( 5 ∗ 11 − 9 ∗ 7 ) = − 1 ∗ ( − 8 ) = 8 A_{12}=(-1)^{1+2}M_{12} \\ =(-1)^3*\begin{vmatrix}5&7\\9&11 \end{vmatrix} \\ =-1*(5*11-9*7)=-1*(-8)=8 A12=(1)1+2M12=(1)359711=1(51197)=1(8)=8

    5/7 任意行/列计算行列式

    D = a i 1 A i 1 + a i 2 A i 2 + ⋯ ⋯ + a i n A i n ( 第 i 行 ) D = a 1 j A 1 j + a 2 j A 2 j + ⋯ ⋯ + a n j A n j ( 第 j 列 ) D = a_{i1}A_{i1}+a_{i2}A_{i2}+\cdots\cdots+a_{in}A_{in}(第i行) \\ D = a_{1j}A_{1j}+a_{2j}A_{2j}+\cdots\cdots+a_{nj}A_{nj}(第j列) D=ai1Ai1+ai2Ai2++ainAin(i)D=a1jA1j+a2jA2j++anjAnj(j)

    例5: ∣ 1 2 3 5 6 7 9 10 11 ∣ = a 11 A 11 + a 12 A 12 + a 13 A 13 = a 11 ( − 1 ) 1 + 1 M 11 + a 12 ( − 1 ) 1 + 2 M 12 + a 13 ( − 1 ) 1 + 3 M 13 = 1 ∗ ( − 1 ) 2 ∗ ∣ 6 7 10 11 ∣ + 2 ∗ ( − 1 ) 3 ∗ ∣ 5 9 7 11 ∣ + 3 ∗ ( − 1 ) 4 ∗ ∣ 5 6 9 10 ∣ = − 3 + 2 ∗ ( − 1 ) ∗ ( − 8 ) + 3 ∗ ( − 4 ) = 1 \begin{vmatrix} 1&2&3\\5&6&7\\9&10&11 \end{vmatrix} =a_{11}A_{11}+a_{12}A_{12}+a_{13}A_{13} \\ =a_{11}(-1)^{1+1}M_{11}+a_{12}(-1)^{1+2}M_{12}+a_{13}(-1)^{1+3}M_{13} \\=1*(-1)^2*\begin{vmatrix}6&7\\10&11\end{vmatrix}+2*(-1)^3*\begin{vmatrix}5&9\\7&11\end{vmatrix}+3*(-1)^4*\begin{vmatrix}5&6\\9&10\end{vmatrix} \\ =-3+2*(-1)*(-8)+3*(-4)=1 15926103711=a11A11+a12A12+a13A13=a11(1)1+1M11+a12(1)1+2M12+a13(1)1+3M13=1(1)2610711+2(1)357911+3(1)459610=3+2(1)(8)+3(4)=1

    ∣ 1 2 3 5 6 7 9 10 11 ∣ = a 12 ∗ A 12 + a 22 ∗ A 22 + a 32 ∗ A 32 = a 12 ∗ ( − 1 ) 1 + 2 M 12 + a 22 ∗ ( − 1 ) 2 + 2 M 22 + a 32 ∗ ( − 1 ) 3 + 2 M 32 = 2 ∗ ( − 1 ) 3 ∣ 5 7 9 11 ∣ + 6 ∗ ( − 1 ) 4 ∣ 1 3 9 11 ∣ + 10 ∗ ( − 1 ) 5 ∣ 1 5 3 7 ∣ = 2 ∗ ( − 1 ) ∗ ( − 8 ) + 6 ∗ ( − 1 ) 4 ∗ ( − 16 ) + 10 ∗ ( − 1 ) 5 ∗ ( − 8 ) = 16 − 96 + 80 = 0 \begin{vmatrix} 1&2&3\\5&6&7\\9&10&11 \end{vmatrix} =a_{12}*A_{12}+a_{22}*A_{22}+a_{32}*A_{32} \\ =a_{12}*(-1)^{1+2}M_{12}+a_{22}*(-1)^{2+2}M_{22}+a_{32}*(-1)^{3+2}M_{32} \\ =2*(-1)^3\begin{vmatrix}5&7\\9&11\end{vmatrix}+6*(-1)^4\begin{vmatrix}1&3\\9&11\end{vmatrix}+10*(-1)^5\begin{vmatrix}1&5\\3&7\end{vmatrix} \\ =2*(-1)*(-8)+6*(-1)^4*(-16)+10*(-1)^5*(-8) \\ =16-96+80=0 15926103711=a12A12+a22A22+a32A32=a12(1)1+2M12+a22(1)2+2M22+a32(1)3+2M32=2(1)359711+6(1)419311+10(1)51357=2(1)(8)+6(1)4(16)+10(1)5(8)=1696+80=0

    6/7 多个A或M相加减

    已 知 D = ∣ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ∣ , 试 求 ① 3 A 11 + 4 A 12 + 5 A 13 + 6 A 14        ② 3 A 11 + 4 A 21 + 5 A 31 + 6 A 41        ③ 3 M 11 + 4 M 21 + 5 M 31 + 6 M 41 已知 D = \begin{vmatrix} 1 & 2 & 3 & 4\\ 5 & 6 & 7 & 8\\ 9 & 10 & 11 & 12\\ 13 & 14 & 15 & 16 \end{vmatrix} ,试求 ① 3A_{11}+4A_{12}+5A_{13}+6A_{14} ~\ ~\ ~\ ② 3A_{11}+4A_{21}+5A_{31}+6A_{41} ~\ ~\ ~\ ③3M_{11}+4M_{21}+5M_{31}+6M_{41} D=159132610143711154812163A11+4A12+5A13+6A14      3A11+4A21+5A31+6A41      3M11+4M21+5M31+6M41

    对于A,直接找到对应的位置,将系数与对应的项进行替换即可:

    3 A 11 + 4 A 12 + 5 A 13 + 6 A 14 = ∣ 3 4 5 6 5 6 7 8 9 10 11 12 13 14 15 16 ∣ 3 A 11 + 4 A 21 + 5 A 31 + 6 A 41 = ∣ 3 2 3 4 4 6 7 8 5 10 11 12 6 14 15 16 ∣ 3A_{11}+4A_{12}+5A_{13}+6A_{14} \\ =\begin{vmatrix} 3 & 4 & 5 & 6 \\ 5 & 6 & 7 & 8\\ 9 & 10 & 11 & 12\\ 13 & 14 & 15 & 16 \end{vmatrix} \\ 3A_{11}+4A_{21}+5A_{31}+6A_{41} \\ =\begin{vmatrix} 3 & 2 & 3 & 4 \\ 4 & 6 & 7 & 8\\ 5 & 10 & 11 & 12\\ 6 & 14 & 15 & 16 \end{vmatrix} 3A11+4A12+5A13+6A14=359134610145711156812163A11+4A21+5A31+6A41=3456261014371115481216

    对于M,则先通过M与A的对应关系,即 A i j = ( − 1 ) i + j M i j A_{ij}=(-1)^{i+j}M_{ij} Aij=(1)i+jMij

    3 M 11 + 4 M 21 + 5 M 31 + 6 M 41 A 11 = ( − 1 ) 1 + 1 M 11 → A 11 = M 11 A 21 = ( − 1 ) 2 + 1 M 21 → A 21 = − M 21 A 31 = ( − 1 ) 3 + 1 M 31 → A 31 = M 31 A 41 = ( − 1 ) 4 + 1 M 241 → A 41 = − M 41 ∴        3 M 11 + 4 M 21 + 5 M 31 + 6 M 41 = 3 A 11 − 4 A 21 + 5 A 31 − 6 M 41 = ∣ 3 2 3 4 − 4 6 7 8 5 10 11 12 − 6 14 15 16 ∣ 3M_{11}+4M_{21}+5M_{31}+6M_{41} \\ \begin{matrix} A_{11}=(-1)^{1+1}M_{11} \xrightarrow{} A_{11}=M_{11} \end{matrix} \\ \begin{matrix} A_{21}=(-1)^{2+1}M_{21} \xrightarrow{} A_{21}=-M_{21} \end{matrix} \\ \begin{matrix} A_{31}=(-1)^{3+1}M_{31} \xrightarrow{} A_{31}=M_{31} \end{matrix} \\ \begin{matrix} A_{41}=(-1)^{4+1}M_{241} \xrightarrow{} A_{41}=-M_{41} \end{matrix} \\ \therefore ~\ ~\ ~\ 3M_{11}+4M_{21}+5M_{31}+6M_{41} \\= 3A_{11}-4A_{21}+5A_{31}-6M_{41} \\ =\begin{vmatrix} 3 & 2 & 3 & 4 \\ -4 & 6 & 7 & 8\\ 5 & 10 & 11 & 12\\ -6 & 14 & 15 & 16 \end{vmatrix} 3M11+4M21+5M31+6M41A11=(1)1+1M11 A11=M11A21=(1)2+1M21 A21=M21A31=(1)3+1M31 A31=M31A41=(1)4+1M241 A41=M41      3M11+4M21+5M31+6M41=3A114A21+5A316M41=3456261014371115481216

    7/7 给一方程组,判读其解的情况

    方程组D≠0D=0其次只有一组零解有零解与非零解非其次只有一组非零解有多个解或无解

    KaTeX parse error: No such environment: equation at position 8: \begin{̲e̲q̲u̲a̲t̲i̲o̲n̲}̲ \left\{ \beg…

    Processed: 0.029, SQL: 9