1 )概述
自变量趋于有限值 x 0 x_0 x0时函数的极限 x → x 0 x \to x_0 x→x0 x → x 0 + x \to x_0^+ x→x0+ x → x 0 − x \to x_0^- x→x0− 自变量趋于无穷大时函数的极限 x → ∞ x \to \infty x→∞ x → + ∞ x \to +\infty x→+∞ x → − ∞ x \to -\infty x→−∞ 以上是函数f(x)自变量变化过程的六种形式2 ) 自变量 x → x 0 x \to x_0 x→x0 时函数的极限
如何刻画 x → x 0 x \to x_0 x→x0 0 < ∣ x − x 0 ∣ < δ 0 < |x - x_0| < \delta 0<∣x−x0∣<δ即 x 0 x_0 x0的去心 δ \delta δ邻域, δ \delta δ是个较小的正数 如何刻画对应函数值的变化 要有对应函数值,就要先使函数在 x 0 x_0 x0的去心 δ \delta δ邻域内有定义而函数在 x 0 x_0 x0有无定义则无要求 如何刻画对应的函数值无限接近于某个常数A ∀ ε > 0 , ∣ f ( x ) − A ∣ < ε , x ∈ U ˚ ( x 0 , δ ) \forall \varepsilon > 0, |f(x) - A| < \varepsilon, x \in \mathring{U}(x_0, \delta) ∀ε>0,∣f(x)−A∣<ε,x∈U˚(x0,δ)3 ) 自变量 x → x 0 x \to x_0 x→x0 时函数的极限定义
设函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0的某一去心邻域内有定义。如果存在常数A,对任意给定的正数 ε \varepsilon ε(无论它有多小),总存在正数 δ \delta δ, 使得当x满足 0 < ∣ x − x 0 ∣ < δ 0 < |x - x_0| < \delta 0<∣x−x0∣<δ时,对应的函数值都有| f ( x ) − A ∣ < ε f(x) - A| < \varepsilon f(x)−A∣<ε, 则称A为函数f(x)当 x → x 0 x \to x_0 x→x0时的极限,记为: lim x → x 0 f ( x ) = A \lim_{x \to x_0} f(x) = A limx→x0f(x)=A 或 f ( x ) → A ( x → x 0 ) f(x) \to A(x \to x_0) f(x)→A(x→x0) ε − δ \varepsilon - \delta ε−δ 语言描述 (1)、 l i m x → x 0 f ( x ) = A lim_{x \to x_0} f(x) = A limx→x0f(x)=A(2)、 ∀ ε > 0 , ∃ δ > 0 \forall \varepsilon > 0, \ \exists \ \delta > 0 ∀ε>0, ∃ δ>0, 当 0 < ∣ x − x 0 ∣ < δ 0 < |x - x_0| < \delta 0<∣x−x0∣<δ 时 ∣ f ( x ) − A ∣ < ε |f(x) - A| < \varepsilon ∣f(x)−A∣<ε(1) ⇔ \Leftrightarrow ⇔ (2) 几何解释 备注:图片托管于github,请确保网络的可访问性例证
证明: lim x → 1 2 ( x 2 − 1 ) x − 1 = 4 \lim_{x \to 1} \frac{2(x^2 - 1)}{x - 1} = 4 limx→1x−12(x2−1)=4
分析:
∣ f ( x ) − A ∣ = ∣ 2 ( x 2 − 1 ) x − 1 − 4 ∣ = ∣ 2 ( x + 1 ) − 4 ∣ = 2 ∣ x − 1 ∣ < ε |f(x) - A| = |\frac{2(x^2 - 1)}{x - 1} - 4| = |2(x+1) - 4| = 2|x - 1| < \varepsilon ∣f(x)−A∣=∣x−12(x2−1)−4∣=∣2(x+1)−4∣=2∣x−1∣<ε ∀ ε > 0 \forall \varepsilon > 0 ∀ε>0, 取 ε = ε 2 \varepsilon = \frac{\varepsilon}{2} ε=2ε当 0 < ∣ x − 1 ∣ < δ 0 < |x - 1| < \delta 0<∣x−1∣<δ 时,必有 ∣ 2 ( x 2 − 1 ) x − 1 − 4 ∣ < ε |\frac{2(x^2 - 1)}{x - 1} - 4| < \varepsilon ∣x−12(x2−1)−4∣<ε因此 lim x → 1 2 ( x 2 − 1 ) x − 1 = 4 \lim_{x \to 1} \frac{2(x^2 - 1)}{x - 1} = 4 limx→1x−12(x2−1)=4左极限与右极限(单侧极限)
左极限 (1) lim x → x 0 f ( x ) = A = : f ( x 0 − ) \lim_{x \to x_0} f(x) = A = :f(x_0^-) limx→x0f(x)=A=:f(x0−)(2) ∀ ε > 0 \forall \varepsilon > 0 ∀ε>0, ∃ δ > 0 \exists \delta > 0 ∃δ>0, 当 x ∈ ( x 0 − δ , x 0 ) x \in (x_0 - \delta, x_0) x∈(x0−δ,x0)时, ∣ f ( x ) − A ∣ < ε |f(x) - A| < \varepsilon ∣f(x)−A∣<ε(1) ⇔ \Leftrightarrow ⇔ (2) 右极限 (1) lim x → x 0 + f ( x ) = A = : f ( x 0 + ) \lim_{x \to x_0^+} f(x) = A = :f(x_0^+) limx→x0+f(x)=A=:f(x0+)(2) ∀ ε > 0 \forall \varepsilon > 0 ∀ε>0, ∃ δ > 0 \exists \delta > 0 ∃δ>0, 当 x ∈ ( x 0 , x 0 + δ ) x \in (x_0, x_0 + \delta) x∈(x0,x0+δ)时, ∣ f ( x ) − A ∣ < ε |f(x) - A| < \varepsilon ∣f(x)−A∣<ε(1) ⇔ \Leftrightarrow ⇔ (2) 可见 (1) lim x → x 0 f ( x ) = A \lim_{x \to x_0} f(x) = A limx→x0f(x)=A(2) lim x → x 0 + f ( x ) = lim x → x 0 − f ( x ) = A \lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) = A limx→x0+f(x)=limx→x0−f(x)=A(1) ⇔ \Leftrightarrow ⇔ (2)例证
试证函数 f ( x ) = { e x , x < 1 0 , x = 1 x + 1 , x > 1 f(x) = \begin{cases} e^x, \ \ \ x < 1\\ 0, \ \ \ x = 1\\ x + 1, \ \ \ x > 1 \end{cases} f(x)=⎩⎪⎨⎪⎧ex, x<10, x=1x+1, x>1, 当 x → 1 x \to 1 x→1时, 极限不存在 从下图可见 lim x → 1 − f ( x ) = lim x → 1 − e x = e \lim_{x \to 1^-} f(x) = \lim_{x \to 1^- e^x = e} limx→1−f(x)=limx→1−ex=e lim x → 1 + f ( x ) = lim x → 1 + ( x + 1 ) = 2 \lim_{x \to 1^+} f(x) = \lim_{x \to 1^+ (x + 1) = 2} limx→1+f(x)=limx→1+(x+1)=2显然 e ≠ 2 e \neq 2 e=2, 从而 lim x → 1 − f ( x ) ≠ lim x → 1 + f ( x ) \lim_{x \to 1^-} f(x) \neq \lim_{x \to 1^+} f(x) limx→1−f(x)=limx→1+f(x)故函数f(x)当 x → 1 x \to 1 x→1 时极限不存在 备注:图片托管于github,请确保网络的可访问性4 ) 自变量 x → ∞ x \to \infty x→∞ 时函数的极限
如何刻画 x → ∞ x \to \infty x→∞? ∣ x ∣ > X |x| > X ∣x∣>X, 其中X是个较大的数 如何刻画对应函数值f(x)的变化? 要有对应函数值,首先要使函数在 ∣ x ∣ > X |x| > X ∣x∣>X内有定义 如何刻画对应的函数值f(x)无限接近于某个常数A? ∀ ε > 0 \forall \varepsilon > 0 ∀ε>0, 当 ∣ x ∣ > X |x| > X ∣x∣>X时, ∣ f ( x ) − A ∣ < ε |f(x) - A| < \varepsilon ∣f(x)−A∣<ε5 ) 自变量 x → ∞ x \to \infty x→∞ 时函数的极限定义
设函数f(x)在当|x|大于某一正数时有定义,如果存在常数A,对任意给定的正数 ε \varepsilon ε(无论它有多小),总存在正数X,使得当x满足 ∣ x ∣ > X |x| > X ∣x∣>X时,对应的函数值都有 ∣ f ( x ) − A ∣ < ε |f(x) - A| < \varepsilon ∣f(x)−A∣<ε, 则称A为函数f(x)当 x → ∞ x \to \infty x→∞时的极限记为: lim x → ∞ f ( x ) = A \lim_{x \to \infty} f(x) = A limx→∞f(x)=A 或 f ( x ) → A ( x → ∞ ) f(x) \to A(x \to \infty) f(x)→A(x→∞)左极限与右极限 (单侧极限) lim x → − ∞ f ( x ) = A ⇔ ∃ ε > 0 , ∃ X > 0 \lim_{x \to -\infty} f(x) = A \Leftrightarrow \exists \varepsilon > 0, \exists X > 0 limx→−∞f(x)=A⇔∃ε>0,∃X>0, 当 x < − X x < -X x<−X时, ∣ f ( x ) − A ∣ < ε |f(x) - A| < \varepsilon ∣f(x)−A∣<ε lim x → + ∞ f ( x ) = A ⇔ ∃ ε > 0 , ∃ X > 0 \lim_{x \to +\infty} f(x) = A \Leftrightarrow \exists \varepsilon > 0, \exists X > 0 limx→+∞f(x)=A⇔∃ε>0,∃X>0, 当 x > X x > X x>X时, ∣ f ( x ) − A ∣ < ε |f(x) - A| < \varepsilon ∣f(x)−A∣<ε ε → ∞ \varepsilon \to \infty ε→∞ 语言描述 (1) lim x → ∞ f ( x ) = A \lim_{x \to \infty} f(x) = A limx→∞f(x)=A(2) ∀ ε > 0 \forall \varepsilon > 0 ∀ε>0, 当 ∃ X > 0 \exists X > 0 ∃X>0, 当 ∣ x ∣ > X |x| > X ∣x∣>X时, ∣ f ( x ) − A ∣ < ε |f(x) - A| < \varepsilon ∣f(x)−A∣<ε(1) ⇔ \Leftrightarrow ⇔ (2) 几何解释 备注:图片托管于github,请确保网络的可访问性例证
证明: lim x → ∞ 1 x = 0 \lim_{x \to \infty} \frac{1}{x} = 0 limx→∞x1=0分析: 欲使 ∣ 1 x − 0 ∣ = 1 ∣ x ∣ < ε |\frac{1}{x} - 0| = \frac{1}{|x|} < \varepsilon ∣x1−0∣=∣x∣1<ε 即: ∣ x ∣ > 1 ε |x| > \frac{1}{\varepsilon} ∣x∣>ε1 ∀ ε > 0 \forall \varepsilon > 0 ∀ε>0, 取 X = 1 ε X = \frac{1}{\varepsilon} X=ε1, 则当 ∣ x ∣ > X |x| > X ∣x∣>X 时,就有 ∣ 1 x − 0 ∣ < ε |\frac{1}{x} - 0| < \varepsilon ∣x1−0∣<ε因此 lim x → ∞ 1 x = 0 \lim_{x \to \infty} \frac{1}{x} = 0 limx→∞x1=0由下图可见, y=0 为 y = 1 x y = \frac{1}{x} y=x1的水平渐近线 备注:图片托管于github,请确保网络的可访问性定理1 函数极限唯一性
如果 lim x → x 0 f ( x ) \lim_{x \to x_0} f(x) limx→x0f(x) 存在,则此极限唯一定理2 函数极限的局部有界性
若 lim x → x 0 f ( x ) = A \lim_{x \to x_0} f(x) = A limx→x0f(x)=A, 则存在常数 M > 0 M > 0 M>0 和 δ > 0 \delta > 0 δ>0,使得当 0 < ∣ x − x 0 ∣ < δ 0 < |x - x_0| < \delta 0<∣x−x0∣<δ 时,有 ∣ f ( x ) ∣ ≤ M |f(x)| \leq M ∣f(x)∣≤M证明 因 lim x → x 0 f ( x ) = A \lim_{x \to x_0} f(x) = A limx→x0f(x)=A, 则 ∀ ε > 0 , ∃ δ > 0 \forall \varepsilon > 0, \exists \delta > 0 ∀ε>0,∃δ>0使得当 0 < ∣ x − x 0 ∣ < δ 0 < |x - x_0| < \delta 0<∣x−x0∣<δ时, ∣ f ( x ) − A ∣ < ε |f(x) - A| < \varepsilon ∣f(x)−A∣<ε.特别地取 ε = 1 \varepsilon = 1 ε=1, 则 ∣ f ( x ) ∣ = ∣ f ( x ) − A + A ∣ ≤ 1 + ∣ A ∣ |f(x)| = |f(x) - A + A| \leq 1 + |A| ∣f(x)∣=∣f(x)−A+A∣≤1+∣A∣取 M = 1 + ∣ A ∣ M = 1 + |A| M=1+∣A∣ 即可定理3 函数极限的局部保号性
如果 lim x → x 0 f ( x ) = A \lim_{x \to x_0} f(x) = A limx→x0f(x)=A, 而且 A > 0 (A < 0), 那么存在常数 δ > 0 \delta > 0 δ>0,使得当 0 < ∣ x − x 0 ∣ < δ 0 < |x - x_0| < \delta 0<∣x−x0∣<δ时,有 f ( x ) > 0 ( f ( x ) < 0 ) f(x) > 0 (f(x) < 0) f(x)>0(f(x)<0)证明: 只证 A < 0 的情况因为 lim x → x 0 f ( x ) = A < 0 \lim_{x \to x_0} f(x) = A < 0 limx→x0f(x)=A<0取 ε = − A 2 \varepsilon = - \frac{A}{2} ε=−2A, 则 ∃ δ > 0 \exists \delta > 0 ∃δ>0, 当 0 < ∣ x − x 0 ∣ < δ 0 < |x - x_0| < \delta 0<∣x−x0∣<δ 时有 ∣ f ( x ) − A ∣ < − A 2 |f(x) - A| < -\frac{A}{2} ∣f(x)−A∣<−2A, 即 f ( x ) < A − A 2 f(x) < A - \frac{A}{2} f(x)<A−2A从而 f ( x ) < A 2 < 0 f(x) < \frac{A}{2} < 0 f(x)<2A<01 ) 第一个重要极限
备注:图片托管于github,请确保网络的可访问性 证明: 当 x ∈ ( 0 , π 2 ) x \in (0, \frac{\pi}{2}) x∈(0,2π) 时, △ A O B \triangle AOB △AOB的面积 < 圆扇形AOB的面积 < △ A O D \triangle AOD △AOD的面积即 1 2 ∗ 1 ∗ 1 ∗ s i n x < x 2 π ∗ π ∗ 1 2 < 1 2 ∗ 1 ∗ t a n x \frac{1}{2} * 1 * 1 * sin x < \frac{x}{2\pi} * \pi * 1^2 < \frac{1}{2} * 1 * tan x 21∗1∗1∗sinx<2πx∗π∗12<21∗1∗tanx即 s i n x < x < t a n x ( 0 < x < π 2 ) sin x < x < tan x \ \ \ (0 < x < \frac{\pi}{2}) sinx<x<tanx (0<x<2π), 从而 1 < x s i n x < 1 c o s x 1 < \frac{x}{sin x} < \frac{1}{cos x} 1<sinxx<cosx1显然有 c o s x < s i n x x < 1 ( 0 < ∣ x ∣ < π 2 ) cosx < \frac{sinx}{x} < 1 \ \ (0 < |x| < \frac{\pi}{2}) cosx<xsinx<1 (0<∣x∣<2π)又 lim x → 0 c o s x = 1 \lim_{x \to 0} cos x = 1 limx→0cosx=1, 故 lim x → 0 s i n x x = 1 \lim_{x \to 0} \frac{sinx}{x} = 1 limx→0xsinx=11 ) 第二个重要极限
lim x → ∞ ( 1 + 1 x ) x = e \lim_{x \to \infty} (1 + \frac{1}{x})^x = e limx→∞(1+x1)x=e
e = 2.718281828459045…
证明思路:
1.首先证明数列 { x n } \{x_n\} {xn}是单调有界数列,从而极限存在,其中 x n = ( 1 + 1 n ) n x_n = (1+\frac{1}{n})^n xn=(1+n1)n2.其次利用两边夹准则证明 lim x → ∞ ( 1 + 1 x ) x = e \lim_{x \to \infty} (1 + \frac{1}{x})^x = e limx→∞(1+x1)x=e3.再用变量代换法证明 lim x → − ∞ ( 1 + 1 x ) x = e \lim_{x \to -\infty} (1 + \frac{1}{x})^x = e limx→−∞(1+x1)x=e4.联合上面两个结论可得: lim x → ∞ ( 1 + 1 x ) x = e \lim_{x \to \infty} (1 + \frac{1}{x})^x = e limx→∞(1+x1)x=e证明:
先证数列 { x n } \{x_n\} {xn}收敛,其中 x = ( 1 + 1 n ) n x = (1 + \frac{1}{n})^n x=(1+n1)n 第一步,证明数列 { x n } \{x_n\} {xn}是单调增加的 x n = ( 1 + 1 n ) n = C n 0 ( 1 n ) 0 + C n 1 ( 1 n ) 1 + C n 2 ( 1 n ) 2 + . . . + C n n ( 1 n ) n x_n = (1 + \frac{1}{n})^n = C_n^0(\frac{1}{n})^0 + C_n^1(\frac{1}{n})^1 + C_n^2(\frac{1}{n})^2 + ... + C_n^n(\frac{1}{n})^n xn=(1+n1)n=Cn0(n1)0+Cn1(n1)1+Cn2(n1)2+...+Cnn(n1)n = 1 + n 1 ! ∗ 1 n + n ( n − 1 ) 2 ! ∗ 1 n 2 + n ( n − 1 ) ( n − 1 ) 3 ! ∗ 1 n 3 + . . . + n ( n − 1 ) ( n − 2 ) ∗ . . . ∗ 2 ∗ 1 n ! ∗ 1 n n = 1 + \frac{n}{1!}*\frac{1}{n} + \frac{n(n-1)}{2!}*\frac{1}{n^2} + \frac{n(n-1)(n-1)}{3!}*\frac{1}{n^3} + ... + \frac{n(n-1)(n-2)*...*2*1}{n!}*\frac{1}{n^n} =1+1!n∗n1+2!n(n−1)∗n21+3!n(n−1)(n−1)∗n31+...+n!n(n−1)(n−2)∗...∗2∗1∗nn1 = 1 + 1 + 1 2 ! ( 1 − 1 n ) + 1 3 ! ( 1 − 1 n ) ( 1 − 2 n ) + . . . + 1 n ! ( 1 − 1 n ) ( 1 − 2 n ) ∗ . . . ∗ ( 1 − n − 1 n ) = 1 + 1 + \frac{1}{2!}(1 - \frac{1}{n}) + \frac{1}{3!}(1 - \frac{1}{n})(1 - \frac{2}{n}) + ... + \frac{1}{n!}(1 - \frac{1}{n})(1 - \frac{2}{n})*...*(1 - \frac{n-1}{n}) =1+1+2!1(1−n1)+3!1(1−n1)(1−n2)+...+n!1(1−n1)(1−n2)∗...∗(1−nn−1)同理, x n + 1 = 1 + 1 + 1 2 ! ( 1 − 1 n + 1 ) + 1 3 ! ( 1 − 1 n + 1 ) ( 1 − 2 n + 1 ) + . . . + 1 n ! ( 1 − 1 n + 1 ) ( 1 − 2 n + 1 ) ∗ . . . ∗ ( 1 − n − 1 n + 1 ) + 1 ( n + 1 ) ! ( 1 − 1 n + 1 ) ( 1 − 2 n + 1 ) ∗ . . . ∗ ( 1 − n n + 1 ) x_{n+1} = 1 + 1 + \frac{1}{2!}(1 - \frac{1}{n+1}) + \frac{1}{3!}(1 - \frac{1}{n+1})(1 - \frac{2}{n + 1}) + ... + \frac{1}{n!}(1 - \frac{1}{n+1})(1 - \frac{2}{n+1})*...*(1 - \frac{n-1}{n+1}) + \frac{1}{(n+1)!}(1 - \frac{1}{n+1})(1 - \frac{2}{n+1})*...*(1- \frac{n}{n+1}) xn+1=1+1+2!1(1−n+11)+3!1(1−n+11)(1−n+12)+...+n!1(1−n+11)(1−n+12)∗...∗(1−n+1n−1)+(n+1)!1(1−n+11)(1−n+12)∗...∗(1−n+1n)可见, x n + 1 > x n , ∀ n ∈ N + x_{n+1} > x_n, \ \ \forall n \in N^+ xn+1>xn, ∀n∈N+ 第二步,证明数列 { x n } \{x_n\} {xn}是有界的 x n = 1 + 1 + 1 2 ! ( 1 − 1 n ) + 1 3 ! ( 1 − 1 n ) ( 1 − 2 n ) + . . . + 1 n ! ( 1 − 1 n ) ( 1 − 2 n ) ∗ . . . ∗ ( 1 − n − 1 n ) x_n = 1 + 1 + \frac{1}{2!}(1 - \frac{1}{n}) + \frac{1}{3!}(1 - \frac{1}{n})(1 - \frac{2}{n}) + ... + \frac{1}{n!}(1 - \frac{1}{n})(1 - \frac{2}{n})*...*(1 - \frac{n-1}{n}) xn=1+1+2!1(1−n1)+3!1(1−n1)(1−n2)+...+n!1(1−n1)(1−n2)∗...∗(1−nn−1)从而, x n < 1 + 1 + 1 2 ! + 1 3 ! + . . . + 1 n ! x_n < 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + ... + \frac{1}{n!} xn<1+1+2!1+3!1+...+n!1 < 1 + 1 + 1 2 + 1 2 2 + . . . + 1 2 n − 1 < 1 + 1 + \frac{1}{2} + \frac{1}{2^2} + ... + \frac{1}{2^{n-1}} <1+1+21+221+...+2n−11 = 1 + 1 ∗ ( 1 − ( 1 2 ) n ) 1 − 1 2 = 1 + \frac{1*(1 - (\frac{1}{2})^n)}{1 - \frac{1}{2}} =1+1−211∗(1−(21)n) = 1 + 2 ( 1 − ( 1 2 ) n ) < 3 = 1 + 2(1 - (\frac{1}{2})^n) < 3 =1+2(1−(21)n)<3其中我们用了不等式 2 n − 1 ≤ n ! 2^{n-1} \leq n! 2n−1≤n! (数学归纳法)于是,由单调增加和有界性知数列 { x n } \{x_n\} {xn}极限存在,记为 lim n → ∞ ( 1 + 1 n ) n = e \lim_{n \to \infty} (1 + \frac{1}{n})^n = e limn→∞(1+n1)n=e上面暂且记为字母e,这里的e满足 1 < e < 3 1 < e < 3 1<e<3 第三步,证明函数极限 lim x → ∞ ( 1 + 1 x ) x = e \lim_{x \to \infty} (1 + \frac{1}{x})^x = e limx→∞(1+x1)x=e 一方面,当x > 1时,设 n ≤ x < n + 1 n \leq x < n+1 n≤x<n+1则 ( 1 + 1 n + 1 ) n < ( 1 + 1 x ) x < ( 1 + 1 n ) n + 1 (1 + \frac{1}{n+1})^n < (1 + \frac{1}{x})^x < (1 + \frac{1}{n})^{n+1} (1+n+11)n<(1+x1)x<(1+n1)n+1 lim n → ∞ ( 1 + 1 n + 1 ) n = lim n → ∞ ( 1 + 1 n + 1 ) n + 1 1 + 1 n + 1 = e \lim_{n \to \infty} (1 + \frac{1}{n+1})^n = \lim_{n \to \infty} \frac{(1 + \frac{1}{n+1})^{n+1}}{1 + \frac{1}{n+1}} = e limn→∞(1+n+11)n=limn→∞1+n+11(1+n+11)n+1=e lim n → ∞ ( 1 + 1 n ) n + 1 = lim n → ∞ [ ( 1 + 1 n ) n ( 1 + 1 n ) ] = e \lim_{n \to \infty} (1 + \frac{1}{n})^{n+1} = \lim_{n \to \infty} [(1 + \frac{1}{n})^n(1 + \frac{1}{n})] = e limn→∞(1+n1)n+1=limn→∞[(1+n1)n(1+n1)]=e ⇒ lim x → + ∞ ( 1 + 1 x ) x = e \Rightarrow \lim_{x \to +\infty} (1 + \frac{1}{x})^x = e ⇒limx→+∞(1+x1)x=e (因 n → + ∞ n \to +\infty n→+∞时, x → + ∞ x \to +\infty x→+∞)另一方面,当 x → − ∞ x \to -\infty x→−∞时,令 x = − ( t + 1 ) x = -(t+1) x=−(t+1), 则 t → + ∞ t \to +\infty t→+∞, 从而有 lim x → − ∞ ( 1 + 1 x ) x = lim t → + ∞ ( 1 − 1 t + 1 ) − ( t + 1 ) \lim_{x \to -\infty} (1 + \frac{1}{x})^x = \lim_{t \to +\infty} (1 - \frac{1}{t + 1})^{-(t+1)} limx→−∞(1+x1)x=limt→+∞(1−t+11)−(t+1) = lim t → + ∞ ( t t + 1 ) − ( t + 1 ) = lim t → + ∞ ( 1 + 1 t ) t + 1 = \lim_{t \to +\infty} (\frac{t}{t+1})^{-(t+1)} = \lim_{t \to +\infty} (1+\frac{1}{t})^{t+1} =limt→+∞(t+1t)−(t+1)=limt→+∞(1+t1)t+1 = lim t → + ∞ [ ( 1 + 1 t ) t ( 1 + 1 t ) ] = e = \lim_{t \to +\infty} [(1+\frac{1}{t})^t(1 + \frac{1}{t})] = e =limt→+∞[(1+t1)t(1+t1)]=e故: lim x → ∞ ( 1 + 1 x ) x = e \lim_{x \to \infty} (1 + \frac{1}{x})^x = e limx→∞(1+x1)x=e (因 lim x → + ∞ ( 1 + 1 x ) x = lim x → − ∞ ( 1 + 1 x ) x = e \lim_{x \to +\infty} (1 + \frac{1}{x})^x = \lim_{x \to -\infty} (1 + \frac{1}{x})^x = e limx→+∞(1+x1)x=limx→−∞(1+x1)x=e)案例1
求 lim x → 0 s i n 2 x x \lim_{x \to 0} \frac{sin 2x}{x} limx→0xsin2x分析: 由 lim x → 0 s i n x x = 1 \lim_{x \to 0} \frac{sin x}{x} = 1 limx→0xsinx=1推出: lim x → 0 s i n 2 x 2 x = 1 \lim_{x \to 0} \frac{sin 2x}{2x} = 1 limx→02xsin2x=1 (①式)有题目变形: lim x → 0 2 ∗ s i n 2 x 2 x \lim_{x \to 0} \frac{2*sin 2x}{2x} limx→02x2∗sin2x (②式)综合①、②推出: lim 2 x → 0 2 ∗ s i n 2 x 2 x = 2 ∗ lim 2 x → 0 s i n 2 x 2 x = 2 ∗ 1 = 2 \lim_{2x \to 0} \frac{2*sin 2x}{2x} = 2 * \lim_{2x \to 0} \frac{sin 2x}{2x} = 2 * 1 = 2 lim2x→02x2∗sin2x=2∗lim2x→02xsin2x=2∗1=2还有另一种方式是化简 s i n 2 x = 2 ∗ s i n x c o s x sin 2x = 2 * sin x cos x sin2x=2∗sinxcosx ,当 x → 0 , c o s x → 1 x \to 0, cos x \to 1 x→0,cosx→1, 同解!案例2
求 lim x → 0 t a n x x \lim_{x \to 0} \frac{tan x}{x} limx→0xtanx分析: 切割化弦: t a n x = s i n x c o s x tan x = \frac{sin x}{cos x} tanx=cosxsinx lim x → 0 s i n x x c o s x \lim_{x \to 0} \frac{sin x}{x cos x} limx→0xcosxsinx当 x → 0 x \to 0 x→0 时, c o s x → 1 cos x \to 1 cosx→1最终,同 lim x → 0 s i n x x = 1 \lim_{x \to 0} \frac{sin x}{x} = 1 limx→0xsinx=1结果为1案例3
求 lim x → ∞ ( 1 + 1 2 x ) x \lim_{x \to \infty} (1 + \frac{1}{2x})^x limx→∞(1+2x1)x分析: 当 x → ∞ x \to \infty x→∞ 时, 2 x → ∞ 2x \to \infty 2x→∞ lim 2 x → ∞ ( ( 1 + 1 2 x ) 2 x ) 1 2 \lim_{2x \to \infty} ((1 + \frac{1}{2x})^{2x})^{\frac{1}{2}} lim2x→∞((1+2x1)2x)21由 lim x → ∞ ( 1 + 1 x ) x = e \lim_{x \to \infty} (1 + \frac{1}{x})^x = e limx→∞(1+x1)x=e知最终结果为 e 1 2 = e e^{\frac{1}{2}} = \sqrt{e} e21=e 案例4
求 lim x → ∞ ( 1 − 1 x ) x \lim_{x \to \infty} (1 - \frac{1}{x})^x limx→∞(1−x1)x分析: lim x → ∞ ( ( 1 + 1 − x ) − x ) − 1 \lim_{x \to \infty} ((1 + \frac{1}{-x})^{-x})^{-1} limx→∞((1+−x1)−x)−1当 x → ∞ x \to \infty x→∞ 时, − x → ∞ -x \to \infty −x→∞化简为: lim − x → ∞ ( ( 1 + 1 − x ) − x ) − 1 = e − 1 = 1 e \lim_{-x \to \infty} ((1 + \frac{1}{-x})^{-x})^{-1} = e^{-1} = \frac{1}{e} lim−x→∞((1+−x1)−x)−1=e−1=e1