Lesson-03-Create-Neural-Framework (1)

    技术2022-07-10  95

    今天整个猛的! BREAK SENTENCE BY YOURSELF!!!

    class Node: def __init__(self, inputs=[], name=None, is_trainable=True): self.inputs = inputs self.outputs = [] self.name = name self.is_trainable = is_trainable for n in self.inputs: n.outputs.append(self) self.value = None self.gradients = {} def forward(self): raise NotImplementedError def backward(self): raise NotImplementedError def __repr__(self): return self.name class Placeholder(Node): def __init__(self, name, is_trainable=True): Node.__init__(self, name=name, is_trainable=is_trainable) def forward(self, value=None): if value is not None: self.value = value def backward(self): self.gradients = {} for n in self.outputs: self.gradients[self] = n.gradients[self] * 1 class Linear(Node): def __init__(self, x=None, weigth=None, bias=None, name=None, is_trainable=False): Node.__init__(self, [x, weigth, bias], name=name, is_trainable=is_trainable) def forward(self): k, x, b = self.inputs[1], self.inputs[0], self.inputs[2] self.value = k.value * x.value + b.value def backward(self): k, x, b = self.inputs[1], self.inputs[0], self.inputs[2] for n in self.outputs: grad_cost = n.gradients[self] self.gradients[k] = grad_cost * x.value self.gradients[x] = grad_cost * k.value self.gradients[b] = grad_cost * 1 class Sigmoid(Node): def __init__(self, x, name=None, is_trainable=False): Node.__init__(self, [x], name=name, is_trainable=is_trainable) self.x = self.inputs[0] def _sigmoid(self, x): return 1. / (1 + np.exp(-1 * x)) def forward(self): self.value = self._sigmoid(self.x.value) def partial(self): return self._sigmoid(self.x.value) * (1 - self._sigmoid(self.x.value)) def backward(self): for n in self.outputs: grad_cost = n.gradients[self] self.gradients[self.x] = grad_cost * self.partial() # print(self.gradients) class Relu(Node): def __init__(self, x, name=None, is_trainable=False): Node.__init__(self, [x], name=name, is_trainable=is_trainable) self.x = x def forward(self): self.value = self.x.value * (self.x.value > 0) def backward(self): for n in self.outputs: grad_cost = n.gradients[self] self.gradients[self.x] = grad_cost * (self.x.value > 0) class L2_LOSS(Node): def __init__(self, y, y_hat, name=None, is_trainable=False): Node.__init__(self, [y, y_hat], name=name, is_trainable=is_trainable) self.y = y self.y_hat = y_hat def forward(self): y_v = np.array(self.y.value) yhat_v = np.array(self.y_hat.value) self.value = np.mean((y_v - yhat_v) ** 2) def backward(self): # 1/n sum (y- yhat)**2 y_v = np.array(self.y.value) yhat_v = np.array(self.y_hat.value) self.gradients[self.y] = 2 * np.mean((y_v - yhat_v)) self.gradients[self.y_hat] = -2 * np.mean((y_v - yhat_v)) # print(self.gradients) from sklearn.datasets import load_boston data = load_boston() X_, y_ = data['data'], data['target'] X_rm = X_[:, 5] def toplogic(graph): sorted_node = [] while len(graph) > 0: all_inputs = [] all_outputs = [] for n in graph: all_inputs += graph[n] all_outputs.append(n) all_inputs = set(all_inputs) all_outputs = set(all_outputs) need_remove = all_outputs - all_inputs # which in all_inputs but not in all_outputs if len(need_remove) > 0: node = random.choice(list(need_remove)) need_to_visited = [node] if len(graph) == 1: need_to_visited += graph[node] graph.pop(node) sorted_node += need_to_visited for _, links in graph.items(): if node in links: links.remove(node) else: # have cycle break return sorted_node from collections import defaultdict def convert_feed_dict_to_graph(feed_dict): computing_graph = defaultdict(list) nodes = [n for n in feed_dict] while nodes: n = nodes.pop(0) if isinstance(n, Placeholder): n.value = feed_dict[n] if n in computing_graph: continue for m in n.outputs: computing_graph[n].append(m) nodes.append(m) return computing_graph def topological_sort_feed_dict(feed_dict): graph = convert_feed_dict_to_graph(feed_dict) return toplogic(graph) def forward_and_backward(graph_order, monitor=False): # 整体的参数就更新了一次 for node in graph_order: if monitor: print('forward computing -- {}'.format(node)) node.forward() for node in graph_order[::-1]: if monitor: print('backward computing -- {}'.format(node)) node.backward() def optimize(graph, learning_rate=1e-2): # there are so many other update / optimization methods # such as Adam, Mom, for t in graph: if t.is_trainable: t.value += -1 * learning_rate * t.gradients[t] from tqdm import tqdm_notebook import numpy as np import random #from xxxx import Linear, Sigmoid, L2_LOSS, Placeholder data = load_boston() X_, y_ = data['data'], data['target'] X_rm = X_[:, 5] w1_, b1_ = np.random.normal(), np.random.normal() w2_, b2_ = np.random.normal(), np.random.normal() w3_, b3_ = np.random.normal(), np.random.normal() X, y = Placeholder(name='X', is_trainable=False), Placeholder(name='y', is_trainable=False) w1, b1 = Placeholder(name='w1'), Placeholder(name='b1') w2, b2 = Placeholder(name='w2'), Placeholder(name='b2')

    build model

    output1 = Linear(X, w1, b1, name='linear-01') output2 = Sigmoid(output1, name='activation') #output2 = Relu(output1, name='activation') y_hat = Linear(output2, w2, b2, name='y_hat') cost = L2_LOSS(y, y_hat, name='cost') feed_dict = { X: X_rm, y: y_, w1: w1_, w2: w2_, b1: b1_, b2: b2_, } graph_sort = topological_sort_feed_dict(feed_dict) epoch = 5000 batch_num = 100 learning_rate = 1e-3 losses = [] for e in tqdm_notebook(range(epoch)): loss = 0 for b in range(batch_num): index = np.random.choice(range(len(X_rm))) X.value = X_rm[index] y.value = y_[index] forward_and_backward(graph_sort, monitor=False) optimize(graph_sort, learning_rate) if e % 100000 == 0: print('cost==', cost.value) loss += cost.value losses.append(loss / batch_num) def predicate(x, graph): X.value = x forward_and_backward(graph_sort) return y_hat.value plt.plot(losses) plt.scatter(X_rm, y_) plot_x = np.linspace(min(X_rm), max(X_rm), 1000) plt.scatter(plot_x, [predicate(x, graph_sort) for x in plot_x], s=30) %matplotlib inline import matplotlib.pyplot as plt

    深度学习就是一场 Overfitting 和 Underfitting 搏斗的过程

    Outlinear~?

    Processed: 0.011, SQL: 9