In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …
An alternative formula for the Fibonacci sequence is .
Given an integer n, your goal is to compute the last 4 digits of Fn.
Input
The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.
Output
For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).
Sample Input
0 9 999999999 1000000000 -1Sample Output
0 34 626 6875Hint
As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by .
Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:
其实就是求第x位斐波那契数列(记得mod10000),不过题目给你介绍了矩阵的相关知识,以及矩阵与斐波那契数列的联系,就是让你用矩阵快速幂来求斐波那契数列。
斐波那契数列的博客 我在这个博客里详细介绍了三种斐波那契数列的求法,其中就有矩阵快速幂的方法 所以我在这就不详细介绍,简单说说: mul(a,b)是用来进行矩阵a与b的乘法运算 pow(mat a,ll n)//快速幂求矩阵a的n次幂