R语言绘制散点图结合边际分布图

    技术2022-08-01  83

    本博客主要介绍使用R语言利用ggplot绘制散点图,并且在图像的两边绘制边际分布图(包括边际直方图与边际密度函数)

    我们这里介绍两种方法进行绘制:

    主要使用ggExtra结合ggplot2两个R包进行绘制。(胜在简洁方便)使用cowplot与ggpubr进行绘制。(胜在灵活且美观)

    下面的绘图我们均以iris数据集为例。


    1. 使用ggExtra结合ggplot2

    1)传统散点图

    # library library(ggplot2) library(ggExtra) # classic plot p <- ggplot(iris) + geom_point(aes(x = Sepal.Length, y = Sepal.Width, color = Species), alpha = 0.6, shape = 16) + # alpha 调整点的透明度;shape 调整点的形状 theme_bw() + theme(legend.position = "bottom") + # 图例置于底部 labs(x = "Sepal Length", y = "Sepal Width") # 添加x,y轴的名称 p

    下面我们一行代码添加边际分布(分别以密度曲线与直方图的形式来展现):

    2)密度函数

    # marginal plot: density ggMarginal(p, type = "density", groupColour = TRUE, groupFill = TRUE)

    3)直方图

    # marginal plot: histogram ggMarginal(p, type = "histogram", groupColour = TRUE, groupFill = TRUE)

    4)箱线图(宽窄的显示会有些问题)

    # marginal plot: boxplot ggMarginal(p, type = "boxplot", groupColour = TRUE, groupFill = TRUE)

    5)小提琴图(会有重叠,不建议使用)

    # marginal plot: violin ggMarginal(p, type = "violin", groupColour = TRUE, groupFill = TRUE)

    6)密度函数与直方图同时展现

    # marginal plot: densigram ggMarginal(p, type = "densigram", groupColour = TRUE, groupFill = TRUE)


    2. 使用cowplot与ggpubr

    1)重绘另一种散点图

    # Scatter plot colored by groups ("Species") sp <- ggscatter(iris, x = "Sepal.Length", y = "Sepal.Width", color = "Species", palette = "jco", size = 3, alpha = 0.6) + border() + theme(legend.position = "bottom") sp

    2)有缝拼接

    ① 密度函数

    library(cowplot) # Marginal density plot of x (top panel) and y (right panel) xplot <- ggdensity(iris, "Sepal.Length", fill = "Species", palette = "jco") yplot <- ggdensity(iris, "Sepal.Width", fill = "Species", palette = "jco") + rotate() # Cleaning the plots sp <- sp + rremove("legend") yplot <- yplot + clean_theme() + rremove("legend") xplot <- xplot + clean_theme() + rremove("legend") # Arranging the plot using cowplot plot_grid(xplot, NULL, sp, yplot, ncol = 2, align = "hv", rel_widths = c(2, 1), rel_heights = c(1, 2))

    ② 未被压缩的箱线图

    # Marginal boxplot of x (top panel) and y (right panel) xplot <- ggboxplot(iris, x = "Species", y = "Sepal.Length", color = "Species", fill = "Species", palette = "jco", alpha = 0.5, ggtheme = theme_bw())+ rotate() yplot <- ggboxplot(iris, x = "Species", y = "Sepal.Width", color = "Species", fill = "Species", palette = "jco", alpha = 0.5, ggtheme = theme_bw()) # Cleaning the plots sp <- sp + rremove("legend") yplot <- yplot + clean_theme() + rremove("legend") xplot <- xplot + clean_theme() + rremove("legend") # Arranging the plot using cowplot plot_grid(xplot, NULL, sp, yplot, ncol = 2, align = "hv", rel_widths = c(2, 1), rel_heights = c(1, 2))

    3)无缝拼接

    # Main plot pmain <- ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width, color = Species)) + geom_point() + color_palette("jco") # Marginal densities along x axis xdens <- axis_canvas(pmain, axis = "x") + geom_density(data = iris, aes(x = Sepal.Length, fill = Species), alpha = 0.7, size = 0.2) + fill_palette("jco") # Marginal densities along y axis # Need to set coord_flip = TRUE, if you plan to use coord_flip() ydens <- axis_canvas(pmain, axis = "y", coord_flip = TRUE) + geom_density(data = iris, aes(x = Sepal.Width, fill = Species), alpha = 0.7, size = 0.2) + coord_flip() + fill_palette("jco") p1 <- insert_xaxis_grob(pmain, xdens, grid::unit(.2, "null"), position = "top") p2 <- insert_yaxis_grob(p1, ydens, grid::unit(.2, "null"), position = "right") ggdraw(p2)


    参考

    Articles - ggpubr: Publication Ready Plots——Perfect Scatter Plots with Correlation and Marginal HistogramsMarginal distribution with ggplot2 and ggExtra
    Processed: 0.009, SQL: 9