import pandas as pd
from fbprophet import Prophet
import matplotlib.pyplot as plt
%matplotlib inline
df = pd.read_csv('./manning.csv')
print(df.head())
print(df.tail())
model = Prophet()
model.fit(df)
future = model.make_future_dataframe(periods=365)
print(future.tail())
forecast = model.predict(future)
print(forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].tail())
model.plot(forecast)
plt.show()
import pandas as pd
from fbprophet import Prophet
import matplotlib.pyplot as plt
%matplotlib inline
df = pd.read_csv('./manning.csv')
print(df.head())
print(df.tail())
model = Prophet()
model.fit(df)
future = model.make_future_dataframe(periods=365)
print(future.tail())
forecast = model.predict(future)
print(forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].tail())
model.plot(forecast)
plt.show()
model.plot_components(forecast)
print(forecast.columns)
df['cap'] = 8.5
m = Prophet(growth='logistic')
m.fit(df)
future = m.make_future_dataframe(periods=1826)
future['cap'] = 8.5
fcst = m.predict(future)
fig = m.plot(fcst)
print(future)
df['y'] = 10 - df['y']
df['cap'] = 6
df['floor'] = 1.5
future['cap'] = 6
future['floor'] = 1.5
m = Prophet(growth='logistic')
m.fit(df)
fcst = m.predict(future)
fig = m.plot(fcst)
from fbprophet.plot import add_changepoints_to_plot
fig = m.plot(forecast)
a = add_changepoints_to_plot(fig.gca(), m, forecast)
print(m)
m = Prophet(changepoints=['2014-01-01'])
m.fit(df)
future = m.make_future_dataframe(periods=365)
forecast = m.predict(future)
m.plot(forecast);
playoffs = pd.DataFrame({
'holiday': 'playoff',
'ds': pd.to_datetime(['2008-01-13', '2009-01-03', '2010-01-16',
'2010-01-24', '2010-02-07', '2011-01-08',
'2013-01-12', '2014-01-12', '2014-01-19',
'2014-02-02', '2015-01-11', '2016-01-17',
'2016-01-24', '2016-02-07']),
'lower_window': 0,
'upper_window': 1,
})
superbowls = pd.DataFrame({
'holiday': 'superbowl',
'ds': pd.to_datetime(['2010-02-07', '2014-02-02', '2016-02-07']),
'lower_window': 0,
'upper_window': 1,
})
holidays = pd.concat((playoffs, superbowls))
m = Prophet(holidays=holidays)
m.fit(df)
future = m.make_future_dataframe(periods=365)
forecast = m.predict(future)
forecast[(forecast['playoff'] + forecast['superbowl']).abs() > 0][['ds', 'playoff', 'superbowl']][-10:]
m.plot_components(forecast)
model.plot_components(forecast)
print(forecast.columns)
转载请注明原文地址:https://ipadbbs.8miu.com/read-3210.html