基于sklearn数字识别(未写完的笔记)

    技术2022-08-16  87

    from sklearn import datasets import matplotlib.pyplot as plt digist = datasets.load_digits() # print(digist.keys()) # print(digist.data[1],digist.target[1]) plt.figure() plt.gray() plt.matshow(digist.images[1]) plt.savefig('fig.png',bbox_inches='tight') # 数据集的分类 from sklearn.model_selection import train_test_split #random_state指定随机数种子。 print(digist.data) X_train,X_test,Y_train,Y_test = train_test_split(digist.data,digist.target,test_size=0.2,random_state=1) # print(X_train,X_test) # print(X_train.shape) from sklearn.neighbors import KNeighborsClassifier knn_classifier = KNeighborsClassifier(n_neighbors=3) knn_classifier.fit(X_train,Y_train) # print(knn_classifier.predict(X_test)) # print(knn_classifier.predict(Y_test)) print(knn_classifier.score(X_test,Y_test))

     

    Processed: 0.013, SQL: 9