An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.
Now given a sequence of insertions, you are supposed to output the level-order traversal sequence of the resulting AVL tree, and to tell if it is a complete binary tree.
Each input file contains one test case. For each case, the first line contains a positive integer N (≤ 20). Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.
Output Specification:
For each test case, insert the keys one by one into an initially empty AVL tree. Then first print in a line the level-order traversal sequence of the resulting AVL tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line. Then in the next line, print YES if the tree is complete, or NO if not.
5
88 70 61 63 65
Sample Output 1:
70 63 88 61 65
YES
8
88 70 61 96 120 90 65 68
Sample Output 2:
88 65 96 61 70 90 120 68
NO
吾:其实只是层序输出方式不同,没有用queue。因为看柳之前的代码,可以通过index的大小输出层序遍历,觉得很好用,所以这里用了这种方式,也算是小小的学以致用吧。
树的旋转很重要!!!
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
int maxindex = -1;
struct node
{
node* left, * right;
int data, level,index;
};
bool cmp(node *a, node *b)
{
return a->index < b->index;
}
node * rotateleft(node *root)
{
node *t = root->right;
root->right = t->left;
t->left = root;
return t;
}
node * rotateright(node *root)
{
node *t = root->left;
root->left = t->right;
t->right = root;
return t;
}
node * leftToright(node *root)
{
root->left=rotateleft(root->left);
return rotateright(root);
}
node * rightToleft(node *root)
{
root->right=rotateright(root->right);
return rotateleft(root);
}
int getheight(node *root)
{
if (root==NULL)
{
return 0;
}
return max(getheight(root->left), getheight(root->right)) + 1;
}
void dfsindex(node *root)
{
if (root!=NULL&&root->index>maxindex)
{
maxindex = root->index;
}
if (root->left!=NULL)
{
root->left->index = root->index * 2;
dfsindex(root->left);
}
if (root->right!=NULL)
{
root->right->index = root->index * 2 + 1;
dfsindex(root->right);
}
}
node* insert(node* root, int value)
{
if (root==NULL)
{
root = new node();
root->data = value;
root->left = NULL;
root->right = NULL;
}
else if(value<root->data)
{
root->left=insert(root->left, value);
if (getheight(root->left) - getheight(root->right) == 2)
{
root=value < root->left->data ? rotateright(root) : leftToright(root);
}
}
else
{
root->right = insert(root->right, value);
if (getheight(root->right)-getheight(root->left)==2)
{
root = value > root->right->data ? rotateleft(root) : rightToleft(root);
}
}
return root;
}
vector<node*> v;
void getnode(node* root)
{
if (root!=NULL)
{
v.push_back(root);
}
if (root->left!=NULL)
{
getnode(root->left);
}
if (root->right!=NULL)
{
getnode(root->right);
}
}
int main()
{//其实也只是层序输出方式不同而已,前面的调整数要会
//freopen("in.txt", "r", stdin);
int n,t;
cin >> n;
node *root = NULL;
for (int i = 0; i < n; i++)
{
cin >> t;
root=insert(root, t);
}
root->index = 1;
dfsindex(root);//从上到下,把每个点的index纠正好
getnode(root);//遍历树种所有的点,压入v中
sort(v.begin(), v.end(), cmp);//把v按照index排序,用于层序输出
cout << v[0]->data;
for (int i = 1; i < v.size(); i++)
{
cout << " " << v[i]->data;
}
cout << endl;
cout << ((maxindex == n) ? "YES" : "NO");
cout<< endl;
return 0;
}