《图像理解》学习笔记(二:特征检测与匹配)

    技术2023-06-22  85

    文章目录

    备注Feature Detection and Matching1. Advantages of Local Features2. Points and PatchesCorner DetectionSIFTSIFT DetectorSIFT Describor

    备注

    图像理解是中国科学技术大学的研究生课程,使用的教材是Richard Szeliski的殿堂级著作"Computer Vision: Algorithms and Applications"。

    Feature Detection and Matching

    1. Advantages of Local Features

    Locality features are local, so robust to occlusion and clutter. 对遮掩的鲁棒性好。Distinctiveness(特殊性) can differentiate a large database of objects. 区分度高。Quantity hundreds or thousands in a single image.Efficiency real-time performance achievable.Generality exploit different types of features in different situations.

    2. Points and Patches

    Corner Detection

    Basic idea: Find points where two edges meet —i.e., high gradient in two directions.“Cornerness” is undefined at a single pixel, because there’s only one gradient per point. —Look at the gradient behavior over a small window.Categories image windows based on gradient statistics —Constant: Little or no brightness change —Edge: Strong brightness change in single direction —Flow: Parallel stripes —Corner/spot: Strong brightness changes in orthogonal directionsAuto-correlation Function(自相关函数) E A C ( Δ u ) = ∑ i w ( x i ) [ I 0 [ x i + Δ u ] − I 0 ( x i ) ] 2 E_{AC}(\Delta u)=\sum_{i}w(x_i)[I_0[x_i+\Delta u]-I_0(x_i)]^2 EAC(Δu)=iw(xi)[I0[xi+Δu]I0(xi)]2 其中 w ( x i ) w(x_i) w(xi)为窗函数, I 0 [ x i + Δ u ] I_0[x_i+\Delta u] I0[xi+Δu]为移动后图像, I 0 ( x i ) I_0(x_i) I0(xi)为原图。 先针对单个点,即对 [ I 0 [ x i + Δ u ] − I 0 ( x i ) ] 2 [I_0[x_i+\Delta u]-I_0(x_i)]^2 [I0[xi+Δu]I0(xi)]2 进行分析,通过泰勒展开,有 [ [ I x I y ] [ u v ] ] 2 \begin{bmatrix}{\begin{bmatrix} I_x & I_y \end{bmatrix}}&{\begin{bmatrix} u \\ v \end{bmatrix}}\end{bmatrix}^2 [[IxIy][uv]]2 = [ u v ] [ I x 2 I x I y I x I y I y 2 ] [ u v ] =\begin{bmatrix} u & v \end{bmatrix}\begin{bmatrix} I_x ^2 & I_xI_y \\ I_xI_y & I_y^2 \end{bmatrix}\begin{bmatrix} u \\ v \end{bmatrix} =[uv][Ix2IxIyIxIyIy2][uv]因为统计对于某一点,统计一块儿区域有意义,所以添加窗函数, E A C ( Δ u ) = ∑ i w ( x i ) [ [ u v ] [ I x 2 I x I y I x I y I y 2 ] [ u v ] ] 2 E_{AC}(\Delta u)=\sum_{i}w(x_i)\begin{bmatrix}{\begin{bmatrix} u & v \end{bmatrix}\begin{bmatrix} I_x ^2 & I_xI_y \\ I_xI_y & I_y^2 \end{bmatrix}\begin{bmatrix} u \\ v \end{bmatrix}}\end{bmatrix}^2 EAC(Δu)=iw(xi)[[uv][Ix2IxIyIxIyIy2][uv]]2设自相关矩阵(Auto-correlation Matrix)为 H = [ I x 2 I x I y I x I y I y 2 ] H=\begin{bmatrix}I_x ^2 & I_xI_y \\ I_xI_y & I_y^2\end{bmatrix} H=[Ix2IxIyIxIyIy2] 则转化为求自相关矩阵的两个特征值 λ 0 λ 1 \lambda_0\lambda_1 λ0λ1。 此外,有 A = ∑ i w ( x i ) [ I x 2 I x I y I x I y I y 2 ] A=\sum_{i}w(x_i)\begin{bmatrix}I_x ^2 & I_xI_y \\ I_xI_y & I_y^2\end{bmatrix} A=iw(xi)[Ix2IxIyIxIyIy2] Harris Detector R = d e t A − α ( t r A ) 2 = λ 0 λ 1 − α ( λ 0 + λ 1 ) 2 R=detA-\alpha (trA)^2=\lambda_0\lambda_1-\alpha(\lambda_0+\lambda_1)^2 R=detAα(trA)2=λ0λ1α(λ0+λ1)2 ( α ∈ [ 0.04 , 0.06 ] ) (\alpha\isin[0.04,0.06]) (α[0.04,0.06])Harmonic Mean f = d e t A t r A = λ 0 λ 1 λ 0 + λ 1 f=\cfrac{detA}{ trA}=\cfrac{\lambda_0\lambda_1}{\lambda_0+\lambda_1} f=trAdetA=λ0+λ1λ0λ1

    SIFT

    SIFT Detector

    SIFT Describor


    Processed: 0.014, SQL: 9