from sklearn
.model_selection
import train_test_split
from sklearn
import preprocessing
from sklearn
.metrics
import accuracy_score
from sklearn
.datasets
import load_digits
from sklearn
.svm
import SVC
import matplotlib
as plt
from sklearn
.metrics
import confusion_matrix
import seaborn
as sns
加载数据
digits
= load_digits
()
data
= digits
.data
查看数据集大小
data
.shape
数据集介绍
1797个样本,每个样本包括88像素的图像和一个[0, 9]整数的标签。 array矩阵类型数据,保存88的图像,里面的元素是float64类型,共有1797张图片 用于显示图片。
获取第一张图片的像素数
print(digits
.images
[0])
将25%的数据作为测试集,其余作为训练集
train_x
, test_x
, train_y
, test_y
= train_test_split
(data
, digits
.target
, test_size
=0.25, random_state
=33)
采用Z-Score规范化
ss
= preprocessing
.StandardScaler
()
train_ss_x
= ss
.fit_transform
(train_x
)
test_ss_x
= ss
.transform
(test_x
)
from sklearn
.linear_model
import LogisticRegression
创建LR分类器
lr
= LogisticRegression
(random_state
= 1)
lr
.fit
(train_ss_x
, train_y
)
predict_y
= lr
.predict
(test_ss_x
)
print('LR准确率: %0.4lf' % accuracy_score
(test_y
, predict_y
))
lr_cm
= confusion_matrix
(test_y
, predict_y
)
sns
.heatmap
(lr_cm
, square
=True, annot
=True, cbar
=False)
转载请注明原文地址:https://ipadbbs.8miu.com/read-4295.html