Market

    技术2022-07-10  143

    !pip install efficient_apriori import pandas as pd import numpy as np from efficient_apriori import apriori # 数据加载 dataset = pd.read_csv('./Market_Basket_Optimisation.csv', header=None) print(dataset.shape) print(transcations) # 将数据存放到transactions中 transcations = [] for i in range(0, dataset.shape[0]): temp = [] for j in range(dataset.shape[1]): if str(dataset.values[i,j]) != 'nan': temp.append(str(dataset.values[i,j])) transcations.append(temp) print(transcations) itemsets, rules = apriori(transcations, min_support=0.05, min_confidence=0.2) print('频繁项集:', itemsets) print('关联规则:', rules)
    Processed: 0.010, SQL: 9