《python》——数据结构与算法内置类型性能分析

    技术2023-12-18  71

    感谢您的阅读,您的关注点赞就是对我最大的支持,谢谢!

    官方交流裙:606115027

    Python内置类型性能分析

    timeit模块

    timeit模块可以用来测试一小段Python代码的执行速度。

    class timeit.Timer(stmt='pass', setup='pass', timer=<timer function>)

    Timer是测量小段代码执行速度的类。

    stmt参数是要测试的代码语句(statment);

    setup参数是运行代码时需要的设置;

    timer参数是一个定时器函数,与平台有关。

    timeit.Timer.timeit(number=1000000)

    Timer类中测试语句执行速度的对象方法。number参数是测试代码时的测试次数,默认为1000000次。方法返回执行代码的平均耗时,一个float类型的秒数。

    list的操作测试

    def t1(): l = [] for i in range(1000): l = l + [i] def t2(): l = [] for i in range(1000): l.append(i) def t3(): l = [i for i in range(1000)] def t4(): l = list(range(1000)) from timeit import Timer timer1 = Timer("t1()", "from __main__ import t1") print("concat ",timer1.timeit(number=1000), "seconds") timer2 = Timer("t2()", "from __main__ import t2") print("append ",timer2.timeit(number=1000), "seconds") timer3 = Timer("t3()", "from __main__ import t3") print("comprehension ",timer3.timeit(number=1000), "seconds") timer4 = Timer("t4()", "from __main__ import t4") print("list range ",timer4.timeit(number=1000), "seconds") # ('concat ', 1.7890608310699463, 'seconds') # ('append ', 0.13796091079711914, 'seconds') # ('comprehension ', 0.05671119689941406, 'seconds') # ('list range ', 0.014147043228149414, 'seconds')

    pop操作测试

    x = range(2000000) pop_zero = Timer("x.pop(0)","from __main__ import x") print("pop_zero ",pop_zero.timeit(number=1000), "seconds") x = range(2000000) pop_end = Timer("x.pop()","from __main__ import x") print("pop_end ",pop_end.timeit(number=1000), "seconds") # ('pop_zero ', 1.9101738929748535, 'seconds') # ('pop_end ', 0.00023603439331054688, 'seconds')

    测试pop操作:从结果可以看出,pop最后一个元素的效率远远高于pop第一个元素

    可以自行尝试下list的append(value)和insert(0,value),即一个后面插入和一个前面插入???

    list内置操作的时间复杂度

     

    dict内置操作的时间复杂度

     

    学Python的安娴 数据分析 Python 解答小可爱 感谢各位大佬们的关注,有问题可私我免费解答,需要学习视频、文档、源码的可以看以下获取方式哔哩哔哩账号:学Python的安娴官方学习口口裙:11418-60209
    Processed: 0.016, SQL: 9