置信区间(confidential interval,CI)也叫区间估计,是另一种做统计推断的方法,和假设检验密切相关。统计量的质量一般用它的bias和variance来衡量,点估计的话不太能直观地表示这两个概念,所以又定义了区间估计 C ^ ( X ) ⊂ Θ \hat{C}(X) \subset \Theta C^(X)⊂Θ,定义 P { θ ∈ C ^ ( X ) } P\{\theta \in \hat{C}(X)\} P{θ∈C^(X)}
为covering probability。定义 C ^ \hat{C} C^是 γ \gamma γ-level 置信区间,如果covering probability为 γ \gamma γ。记 C ^ ( X ) = [ θ ^ L ( X ) , θ ^ U ( X ) ] \hat{C}(X) = [\hat{\theta}_L(X),\hat{\theta}_U(X)] C^(X)=[θ^L(X),θ^U(X)],频率派统计认为真实的参数 θ \theta θ是一个只有造物主才知道的常数,区间估计中区间的端点是基于随机样本的统计量,因此这个区间是随机的,我们可以用频率的观点来解释covering probability,假设我们独立重复抽取了一百组样本,可以计算出一百个置信区间,那么这一百个里面大概就会有 100 γ 100 \gamma 100γ个包含真实的参数 θ \theta θ。
假设 g g g在参数空间上是一个单调变换,存在统计量 h ( X ) h(X) h(X)是 g ( θ ) g(\theta) g(θ)的无偏估计, E [ h ( X ) ] = g ( θ ) E[h(X)] = g(\theta) E[h(X)]=g(θ),根据定义, θ \theta θ的 γ \gamma γ置信区间为 P ( θ ^ L ≤ θ ≤ θ ^ U ) = γ P(\hat{\theta}_L \le \theta \le \hat{\theta}_U) = \gamma P(θ^L≤θ≤θ^U)=γ
如果 g ( θ ) g(\theta) g(θ)是单增的变换,则 P ( g ( θ ^ L ) ≤ g ( θ ) ≤ g ( θ ^ U ) ) = γ P(g(\hat{\theta}_L) \le g(\theta) \le g(\hat{\theta}_U)) = \gamma P(g(θ^L)≤g(θ)≤g(θ^U))=γ
如果 g ( θ ) g(\theta) g(θ)是单减的变换,则 P ( g ( θ ^ U ) ≤ g ( θ ) ≤ g ( θ ^ L ) ) = γ P(g(\hat{\theta}_U) \le g(\theta) \le g(\hat{\theta}_L)) = \gamma P(g(θ^U)≤g(θ)≤g(θ^L))=γ
因为我们构造的统计量是 g ( θ ) g(\theta) g(θ)的无偏估计,可以根据 h ( X ) h(X) h(X)构造出 h ( X ) + / − m ( X ) h(X) +/- m(X) h(X)+/−m(X)使得 P ( h ( X ) − m ( X ) ≤ g ( θ ) ≤ h ( X ) + m ( X ) ) = γ P(h(X) -m(X) \le g(\theta) \le h(X) + m(X)) = \gamma P(h(X)−m(X)≤g(θ)≤h(X)+m(X))=γ
这里的构造方法通常是枢轴量法,可以参考UA MATH566 统计理论8 用Pivot构造置信区间。如果 g ( θ ) g(\theta) g(θ)是单增的变换,则令 g ( θ ^ L ) = h ( X ) − m ( X ) ⇒ θ ^ L = g − 1 ( h ( X ) − m ( X ) ) g ( θ ^ U ) = h ( X ) + m ( X ) ⇒ θ ^ U = g − 1 ( h ( X ) + m ( X ) ) g(\hat{\theta}_L) = h(X) -m(X) \Rightarrow \hat{\theta}_L = g^{-1}( h(X) -m(X)) \\ g(\hat{\theta}_U) = h(X) +m(X) \Rightarrow \hat{\theta}_U = g^{-1}( h(X) +m(X)) g(θ^L)=h(X)−m(X)⇒θ^L=g−1(h(X)−m(X))g(θ^U)=h(X)+m(X)⇒θ^U=g−1(h(X)+m(X))
如果 g ( θ ) g(\theta) g(θ)是单减的变换,则令 g ( θ ^ L ) = h ( X ) + m ( X ) ⇒ θ ^ L = g − 1 ( h ( X ) + m ( X ) ) g ( θ ^ U ) = h ( X ) − m ( X ) ⇒ θ ^ U = g − 1 ( h ( X ) − m ( X ) ) g(\hat{\theta}_L) = h(X) +m(X) \Rightarrow \hat{\theta}_L = g^{-1}( h(X) +m(X)) \\ g(\hat{\theta}_U) = h(X) -m(X) \Rightarrow \hat{\theta}_U = g^{-1}( h(X) -m(X)) g(θ^L)=h(X)+m(X)⇒θ^L=g−1(h(X)+m(X))g(θ^U)=h(X)−m(X)⇒θ^U=g−1(h(X)−m(X))
下面举例说明这套流程怎么操作:
例1 { X i } i = 1 n ∼ i i d E X P ( λ ) \{X_i\}_{i=1}^n \sim_{iid} EXP(\lambda) {Xi}i=1n∼iidEXP(λ),求 λ \lambda λ的 1 − α 1-\alpha 1−α置信区间 先写出样本的联合概率密度 f ( x 1 , ⋯ , x n ∣ λ ) = 1 λ n e − 1 / λ ∑ i = 1 n X i f(x_1,\cdots,x_n|\lambda) = \frac{1}{\lambda^n} e^{-1/\lambda\sum_{i=1}^n X_i} f(x1,⋯,xn∣λ)=λn1e−1/λ∑i=1nXi
根据Neyman-Fisher定理, ∑ i = 1 n X i \sum_{i=1}^n X_i ∑i=1nXi是充分统计量。样本的对数似然为 l ( λ ) = − n log λ − 1 λ ∑ i = 1 n X i = 0 l ′ ( λ ) = − n λ + 1 λ 2 ∑ i = 1 n X i = 0 ⇒ λ ^ = X ˉ l(\lambda) = -n\log \lambda - \frac{1}{\lambda}\sum_{i=1}^n X_i = 0 \\ l'(\lambda) = -\frac{n}{\lambda} + \frac{1}{\lambda^2}\sum_{i=1}^n X_i = 0 \Rightarrow \hat{\lambda} = \bar{X} l(λ)=−nlogλ−λ1i=1∑nXi=0l′(λ)=−λn+λ21i=1∑nXi=0⇒λ^=Xˉ
E [ X ˉ ] = E [ X 1 ] = 1 λ E[\bar{X}] = E[X_1] = \frac{1}{\lambda} E[Xˉ]=E[X1]=λ1,说明 X ˉ \bar{X} Xˉ是 1 / λ 1/\lambda 1/λ的无偏估计。这时对应的是单调递减的情况,这里的 h ( X ) h(X) h(X)就是 X ˉ \bar{X} Xˉ,我们尝试用 X ˉ \bar{X} Xˉ构造一个 1 / λ 1/\lambda 1/λ的置信区间。根据gamma分布的可加性, ∑ i = 1 n X i ∼ Γ ( n , λ ) \sum_{i=1}^n X_i \sim \Gamma(n,\lambda) ∑i=1nXi∼Γ(n,λ),做一个尺度变换后, X ˉ ∼ Γ ( n , λ / n ) \bar{X} \sim \Gamma(n,\lambda/n) Xˉ∼Γ(n,λ/n),构造枢轴量 Q = n X ˉ 2 λ ∼ χ 2 n 2 Q = \frac{n\bar{X}}{2\lambda} \sim \chi^2_{2n} Q=2λnXˉ∼χ2n2
记 χ 2 n , α 2 2 \chi^2_{2n,\frac{\alpha}{2}} χ2n,2α2和 χ 2 n , 1 − α 2 2 \chi^2_{2n,1-\frac{\alpha}{2}} χ2n,1−2α2分别为 χ 2 n 2 \chi^2_{2n} χ2n2的 α / 2 , 1 − α / 2 \alpha/2,1-\alpha/2 α/2,1−α/2分位点,则 P ( χ 2 n , α 2 2 ≤ Q ≤ χ 2 n , 1 − α 2 2 ) = 1 − α P(\chi^2_{2n,\frac{\alpha}{2}} \le Q \le \chi^2_{2n,1-\frac{\alpha}{2}}) = 1-\alpha P(χ2n,2α2≤Q≤χ2n,1−2α2)=1−α
由此可以解出 P ( n X ˉ 2 χ 2 n , 1 − α 2 2 ≤ λ ≤ n X ˉ 2 χ 2 n , α 2 2 ) = 1 − α P(\frac{n\bar{X}}{2\chi^2_{2n,1-\frac{\alpha}{2}}} \le \lambda \le \frac{n\bar{X}}{2\chi^2_{2n,\frac{\alpha}{2}}}) = 1-\alpha P(2χ2n,1−2α2nXˉ≤λ≤2χ2n,2α2nXˉ)=1−α
因此 λ \lambda λ的 1 − α 1-\alpha 1−α置信区间为 { λ : n X ˉ 2 χ 2 n , 1 − α 2 2 ≤ λ ≤ n X ˉ 2 χ 2 n , α 2 2 } \{\lambda:\frac{n\bar{X}}{2\chi^2_{2n,1-\frac{\alpha}{2}}} \le \lambda \le \frac{n\bar{X}}{2\chi^2_{2n,\frac{\alpha}{2}}}\} {λ:2χ2n,1−2α2nXˉ≤λ≤2χ2n,2α2nXˉ}
例2 { X i } i = 1 n ∼ i i d U ( 0 , θ ) \{X_i\}_{i=1}^n \sim_{iid} U(0,\theta) {Xi}i=1n∼iidU(0,θ),求 θ \theta θ的 1 − α 1-\alpha 1−α置信区间 写出样本的联合似然函数 L ( θ ) = ∏ i = 1 n I ( X i ≤ θ ) θ = I ( X ( n ) ≤ θ ) θ n L(\theta) = \prod_{i=1}^n \frac{I( X_i\le \theta)}{\theta} = \frac{I(X_{(n)} \le \theta)}{\theta^n} L(θ)=i=1∏nθI(Xi≤θ)=θnI(X(n)≤θ)
根据Neyman-Fisher定理, X ( n ) X_{(n)} X(n)是充分统计量。如果根据 X ( n ) X_{(n)} X(n)构造置信区间的话,先分析一下它的分布, P ( X ( n ) ≤ y ) = P ( max X i ≤ y ) = ∏ i = 1 n P ( X i ≤ y ) = y n θ n P(X_{(n)} \le y) = P(\max X_i \le y) = \prod_{i=1}^n P(X_i \le y) = \frac{y^n}{\theta^n} P(X(n)≤y)=P(maxXi≤y)=i=1∏nP(Xi≤y)=θnyn
构造枢轴量 Q = X ( n ) θ Q = \frac{X_{(n)}}{\theta} Q=θX(n)
则 P ( Q ≤ y ) = P ( X ( n ) ≤ θ y ) = y n , y ∈ [ 0 , 1 ] P(Q \le y) = P(X_{(n)} \le \theta y) = y^n,y \in [0,1] P(Q≤y)=P(X(n)≤θy)=yn,y∈[0,1], Q Q Q的 α / 2 \alpha/2 α/2与 1 − α 2 1-\frac{\alpha}{2} 1−2α为 ( α 2 ) 1 / n \left( \frac{\alpha}{2}\right)^{1/n} (2α)1/n和 ( 1 − α 2 ) 1 / n \left(1- \frac{\alpha}{2}\right)^{1/n} (1−2α)1/n,即 P ( ( α 2 ) 1 / n ≤ Q ≤ ( 1 − α 2 ) 1 / n ) = 1 − α P(\left( \frac{\alpha}{2}\right)^{1/n} \le Q \le \left(1- \frac{\alpha}{2}\right)^{1/n}) = 1-\alpha P((2α)1/n≤Q≤(1−2α)1/n)=1−α
所以 P ( X ( n ) ( 1 − α 2 ) 1 / n ≤ θ ≤ X ( n ) ( α 2 ) 1 / n ) = 1 − α P(\frac{X_{(n)}}{\left(1- \frac{\alpha}{2}\right)^{1/n}} \le \theta \le \frac{X_{(n)}}{\left(\frac{\alpha}{2}\right)^{1/n}} ) = 1-\alpha P((1−2α)1/nX(n)≤θ≤(2α)1/nX(n))=1−α
也可以用矩估计来构造置信区间, θ ^ = 2 n ∑ i = 1 n X i \hat{\theta} = \frac{2}{n}\sum_{i=1}^n X_i θ^=n2i=1∑nXi
这时构造的枢轴量是 Q = n θ ^ 2 θ Q = \frac{n\hat{\theta}}{2\theta} Q=2θnθ^
它服从参数为 n n n的Ising-Hall分布。