Python画柱形图之seaborn

    技术2024-05-16  80

    1.柱形图。

    import matplotlib.pylab as plt import seaborn as sns import pandas as pd df = pd.DataFrame() df['group'] = ['A','B','C'] df['value'] = [12, 4, 8] p1=sns.barplot( data=df, x='group', y='value' ) plt.show()

    import matplotlib.pylab as plt import seaborn as sns import pandas as pd df = sns.load_dataset('iris') p2=sns.barplot( data=df, x='species', y='sepal_length' ) plt.show()

     

    import matplotlib.pylab as plt import seaborn as sns import pandas as pd df = sns.load_dataset('iris') p3=sns.countplot(data=df, x="species") plt.show()

     

    import matplotlib.pylab as plt import seaborn as sns import pandas as pd df = sns.load_dataset('iris') p1=sns.barplot( data=df, x='species', y='sepal_length', linewidth=5, edgecolor='orange' ) plt.show()

     

    import matplotlib.pylab as plt import seaborn as sns import pandas as pd df = sns.load_dataset('iris') p1=sns.barplot( data=df, x='species', y='sepal_length', facecolor="skyblue") plt.show()

     

    import matplotlib.pylab as plt import seaborn as sns import pandas as pd df = sns.load_dataset('iris') p2=sns.barplot( data=df, x='species', y='sepal_length', palette="Set2" ) plt.show()

     

    import matplotlib.pylab as plt import seaborn as sns import pandas as pd df = sns.load_dataset('iris') p3=sns.barplot( data=df, x='species', y='sepal_length', palette="Blues_d") plt.show()

     

    import matplotlib.pylab as plt import seaborn as sns import pandas as pd df = sns.load_dataset('iris') p4=sns.barplot( data=df, x='species', y='sepal_length', facecolor=(0.2,0.4,0.7,0.2) ) plt.show()

     

    import matplotlib.pylab as plt import seaborn as sns import pandas as pd df = sns.load_dataset('iris') p1=sns.barplot( data=df, y='species', x='sepal_length' ) plt.show()

     

    import matplotlib.pylab as plt import seaborn as sns import pandas as pd df = sns.load_dataset('tips') p1=sns.barplot(x="day", y="total_bill", hue="sex", data=df) plt.show()

     

    import matplotlib.pylab as plt import seaborn as sns import pandas as pd df = sns.load_dataset('iris') p1=sns.barplot( data=df, x='species', y='sepal_length', order=["versicolor", "virginica", "setosa"] ) plt.show()

     

    import matplotlib.pylab as plt import seaborn as sns import pandas as pd from numpy import median df = sns.load_dataset('iris') p2=sns.barplot( data=df, x='species', y='sepal_length', estimator=median ) plt.show()

     

    import matplotlib.pylab as plt import seaborn as sns df = sns.load_dataset('iris') p1=sns.barplot( data=df, x='species', y='sepal_length' , capsize=.2) plt.show()

     

    import matplotlib.pylab as plt import seaborn as sns df = sns.load_dataset('iris') p2=sns.barplot( data=df, x='species', y='sepal_length' , capsize=.2, ci=99) plt.show()

     

    import matplotlib.pylab as plt import seaborn as sns df = sns.load_dataset('iris') p3=sns.barplot( data=df, x='species', y='sepal_length' , capsize=.2, errcolor="g") plt.show()

     

    本博主新开公众号, 希望大家能扫码关注一下,十分感谢大家。

     

    本文来自:https://github.com/holtzy/The-Python-Graph-Gallery/blob/master/PGG_notebook.py 

    Processed: 0.015, SQL: 9