两个重要极限定理: lim x → 0 sin x x = 1 (1) \lim_{x \rightarrow 0} \frac{\sin x}{x} = 1 \tag{1} x→0limxsinx=1(1) 和 lim x → ∞ ( 1 + 1 x ) x = e (2) \lim_{x \rightarrow \infty} (1 + \frac{1}{x})^x = e \tag{2} x→∞lim(1+x1)x=e(2)
引理(夹逼定理)
定义一:
如果数列 { X n } \lbrace X_n \rbrace {Xn}, { Y n } \lbrace Y_n \rbrace {Yn} 及 { Z n } \lbrace Z_n \rbrace {Zn} ,满足下列条件:
(1) 当 n > N 0 n > N_0 n>N0 时,其中 N 0 ∈ N ∗ N_0 \in N^* N0∈N∗ ,有 Y n ≤ X n ≤ Z n Y_n \le X_n \le Z_n Yn≤Xn≤Zn,
(2) { Y n } \lbrace Y_n\rbrace {Yn}, { Z n } \lbrace Z_n \rbrace {Zn} 有相同的极限 a a a,设 − ∞ < a < + ∞ - \infty < a < + \infty −∞<a<+∞,则,数列 { X n } \lbrace X_n \rbrace {Xn} 的极限存在,且 lim n → ∞ X n = a \lim_{n \rightarrow \infty} X_n = a n→∞limXn=a 定义二:
F ( x ) F(x) F(x) 与 G ( x ) G(x) G(x) 在 X 0 X_0 X0 连续且存在相同的极限 A A A,即 x → X 0 x \rightarrow X_0 x→X0 时, lim F ( x ) = lim G ( x ) = A \lim F(x) = \lim G(x) = A limF(x)=limG(x)=A,则
若有函数在 f ( x ) f(x) f(x) 在 X 0 X_0 X0 的某领域内恒有 F ( x ) ≤ f ( x ) ≤ G ( x ) F(x) \le f(x) \le G(x) F(x)≤f(x)≤G(x) ,则当 X X X 趋近 X 0 X_0 X0, 有 lim F ( x ) ≤ lim f ( x ) ≤ l i m G ( x ) \lim F(x) \le \lim f(x) \le lim G(x) limF(x)≤limf(x)≤limG(x) 即 A ≤ l i m f ( x ) ≤ A A \le lim f(x) \le A A≤limf(x)≤A 故 lim ( X 0 ) = A \lim(X_0) = A lim(X0)=A 简单地说:函数 A > B A>B A>B,函数 B > C B>C B>C,函数 A A A的极限是 X X X,函数 C C C 的极限也是 X X X ,那么函数 B B B 的极限就一定是 X X X,这个就是夹逼定理。
定理 1 证明:
如上图,对于弧 A C ⌢ \mathop{AC}\limits^{\frown} AC⌢ ,由于半径 1 1 1,所以,弧 A C ⌢ \mathop{AC}\limits^{\frown} AC⌢ 长 x x x。图片很直观地看出 sin x ≤ x ≤ tan x \sin x \le x \le \tan x sinx≤x≤tanx,并在 x → 0 x \rightarrow 0 x→0的时候,他们都"相等"。这个是几何直观的,如果我们假设化曲为直是可行的。
所以,
由上述公式, sin x ≤ x ≤ t a n x ⟺ 1 ≤ x sin x ≤ tan x sin x ⟺ 1 ≤ x sin x ≤ 1 cos x \sin x \le x \le tan x \iff 1 \le \frac{x}{\sin x} \le \frac{\tan x}{\sin x} \iff 1 \le \frac{x}{\sin x} \le \frac{1}{\cos x} sinx≤x≤tanx⟺1≤sinxx≤sinxtanx⟺1≤sinxx≤cosx1 由上式取倒数得: cos x ≤ sin x x ≤ 1 \cos x \le \frac{\sin x}{x} \le 1 cosx≤xsinx≤1 因为, lim x → 0 cos x = 1 \lim_{x \rightarrow 0} \cos x = 1 x→0limcosx=1 所以, lim x → 0 sin x x = 1 \lim_{x \rightarrow 0} \frac{\sin x}{x} = 1 x→0limxsinx=1 定理 1,得证。
定理2,证明:
首先,证明此极限存在;
构造数列 x n = ( 1 + 1 n ) n x_n = (1 + \frac{1}{n})^n xn=(1+n1)n 根据二项式定理,进行展开: x n = C n 0 1 n ( 1 n ) 0 + C n 1 1 n − 1 ( 1 n ) 1 + C n 2 1 n − 2 ( 1 n ) 2 + ⋯ + n ( n − 1 ) ( n − 2 ) ⋯ 1 n ! 1 0 ( 1 n ) n = 1 + 1 + 1 2 ! ( 1 − 1 n ) + 1 3 ! ( 1 − 1 n ) ( 1 − 2 n ) + ⋯ + 1 n ! ( 1 − 1 n ) ( 1 − 2 n ) ⋯ ( 1 − n − 1 n ) < 2 + 1 2 ! + 1 3 ! + ⋯ 1 n ! < 2 + 1 2 + 1 2 2 + 1 2 3 + ⋯ + 1 2 n − 1 = 3 − 1 2 n − 1 < 3 x_n = C_n^01^n(\frac{1}{n})^0 + C_n^11^{n-1}({\frac{1}{n}})^1 + C_n^21^{n-2}({\frac{1}{n}})^2 + \cdots + \frac{n(n-1)(n-2)\cdots1}{n!}1^0(\frac{1}{n})^n \\ = 1 + 1 + \frac{1}{2!}(1 - \frac{1}{n}) + \frac{1}{3!}(1-\frac{1}{n})(1-\frac{2}{n}) + \cdots + \frac{1}{n!}(1-\frac{1}{n})(1-\frac{2}{n})\cdots(1-\frac{n-1}{n}) \\ < 2 + \frac{1}{2!} +\frac{1}{3!} + \cdots \frac{1}{n!} \\ < 2 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \cdots + \frac{1}{2^{n-1}} = 3 - \frac{1}{2^{n-1}} < 3 xn=Cn01n(n1)0+Cn11n−1(n1)1+Cn21n−2(n1)2+⋯+n!n(n−1)(n−2)⋯110(n1)n=1+1+2!1(1−n1)+3!1(1−n1)(1−n2)+⋯+n!1(1−n1)(1−n2)⋯(1−nn−1)<2+2!1+3!1+⋯n!1<2+21+221+231+⋯+2n−11=3−2n−11<3 而对于 x n + 1 = ( 1 + 1 n + 1 ) n + 1 = 2 + 1 2 ! ( 1 − 1 n ) + ⋯ + 1 n ! ( 1 − 1 n ) ( 1 − 2 n ) ⋯ ( 1 − n − 1 n ) + 1 ( n + 1 ) ! ( 1 − 1 n + 1 ) ( 1 − 2 n + 1 ) ) ⋯ ( 1 − n n + 1 ) x_{n+1} = (1 + \frac{1}{n+1})^{n+1} \\ = 2 + \frac{1}{2!}(1 - \frac{1}{n}) + \cdots + \frac{1}{n!}(1-\frac{1}{n})(1-\frac{2}{n})\cdots(1-\frac{n-1}{n}) + \frac{1}{(n+1)!}(1-\frac{1}{n+1})(1-\frac{2}{n+1}))\cdots(1- \frac{n}{n+1}) xn+1=(1+n+11)n+1=2+2!1(1−n1)+⋯+n!1(1−n1)(1−n2)⋯(1−nn−1)+(n+1)!1(1−n+11)(1−n+12))⋯(1−n+1n) 所以 x n + 1 − x n = 1 ( n + 1 ) ! ( 1 − 1 n + 1 ) ( 1 − 2 n + 1 ) ) ⋯ ( 1 − n n + 1 ) > 0 x_{n+1}-x_n = \frac{1}{(n+1)!}(1-\frac{1}{n+1})(1-\frac{2}{n+1}))\cdots(1- \frac{n}{n+1}) > 0 xn+1−xn=(n+1)!1(1−n+11)(1−n+12))⋯(1−n+1n)>0 故, x n + 1 > x n x_{n+1} > x_n xn+1>xn 该序列为单调递增序列,存在极限,记此极限为 e e e。
对于实数 x x x,则总存在整数 n n n,使得 n ≤ x ≤ n + 1 n \le x \le n+1 n≤x≤n+1,则有 ( 1 + 1 n + 1 ) n < ( 1 + 1 x ) x < ( 1 + 1 n ) n + 1 (1+\frac{1}{n+1})^n < (1+\frac{1}{x})^x<(1+\frac{1}{n})^{n+1} (1+n+11)n<(1+x1)x<(1+n1)n+1
lim n → ∞ ( 1 + 1 n + 1 ) n = lim n → ∞ ( 1 + 1 n + 1 ) 1 + 1 n + 1 = lim n → ∞ ( 1 + 1 n + 1 ) n + 1 lim n → ∞ ( 1 + 1 n + 1 ) = e 1 = e \lim_{n \rightarrow \infty}(1+\frac{1}{n+1})^n = \lim_{n \rightarrow \infty}\frac{(1+\frac{1}{n+1})}{1 + \frac{1}{n+1}} = \frac{\lim_{n \rightarrow \infty}(1+\frac{1}{n+1})^{n+1}}{\lim_{n \rightarrow \infty}(1 + \frac{1}{n+1})} = \frac{e}{1} = e n→∞lim(1+n+11)n=n→∞lim1+n+11(1+n+11)=limn→∞(1+n+11)limn→∞(1+n+11)n+1=1e=e
同理, lim n → ∞ ( 1 + 1 n ) n + 1 = lim n → ∞ ( 1 + 1 n ) ( 1 + 1 n ) n = lim n → ∞ ( 1 + 1 n ) lim n → ∞ ( 1 + 1 n ) n = e \lim_{n \rightarrow \infty}(1+\frac{1}{n})^{n+1} = \lim_{n \rightarrow \infty}(1 + \frac{1}{n})(1 + \frac{1}{n})^n = \lim_{n \rightarrow \infty}(1 + \frac{1}{n})\lim_{n \rightarrow \infty}(1 + \frac{1}{n})^n = e n→∞lim(1+n1)n+1=n→∞lim(1+n1)(1+n1)n=n→∞lim(1+n1)n→∞lim(1+n1)n=e
故,根据夹逼定理,函数 f ( x ) = lim n → ∞ f r a c ( 1 + 1 x ) x f(x) = \lim_{n \rightarrow \infty}frac(1 + \frac{1}{x})^x f(x)=limn→∞frac(1+x1)x 的极限存在,为 e e e。