机器学习中分类和回归模型的评价指标

    技术2022-07-10  126

     

    分类算法的效果评估

    1,准确率accuracy_score from sklearn.metrics import accuracy_score

    2,精确率/查准率precision_score from sklearn.metrics import precision_score 分为宏平均(macro)和微平均(micro),宏平均比微平均更合理。 metrics.precision_score(y_true, y_pred, average='micro') metrics.precision_score(y_true, y_pred, average='macro') 其中average参数有五种:(None, ‘micro’, ‘macro’, ‘weighted’, ‘samples’)

    3,召回率/查全率recall_score from sklearn.metrics import recall_score 召回率也有宏平均和微平均的区别,和上面的用法一样。

    4,F1-score from sklearn.metrics import f1_score metrics.f1_score(y_true, y_pred, average='weighted')

    5,混淆矩阵(confusion-matrix) from sklearn.metrics import confusion_matrix

    6,分类报告(classification_report) from sklearn.metrics import classification_report 包含precision/recall/f1-score/均值/分类个数

    7,kappa score from sklearn.metrics import cohen_kappa_score cohen_kappa_score(y_true, y_pred)

    8,ROC 1)计算ROC值 from sklearn.metrics import roc_auc_score roc_auc_score(y_true, y_scores) 2)画ROC图 具体画ROC图的方法请参照官方给出的代码http://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html

    9,距离 1)海明距离(hamming_loss) from sklearn.metrics import hamming_loss hamming_loss(y_true, y_pred) 2)Jaccard距离(jaccard_similarity_score) from sklearn.metrics import jaccard_similarity_score jaccard_similarity_score(y_true, y_pred)

    回归算法的评价指标

    1,可释方差也叫解释方差(explained_variance_score) from sklearn.metrics import explained_variance_score explained_variance_score(y_true, y_pred)

    2,平均绝对误差(mean_absolute_error) from sklearn.metrics import mean_absolute_error mean_absolute_error(y_true, y_pred)

    3,均方误差(mean_squared_error) from sklearn.metrics import mean_squared_error mean_squared_error(y_true, y_pred)

    4,中值绝对误差(median_absolute_error) from sklearn.metrics import median_absolute_error median_absolute_error(y_true, y_pred)

    5,R方值,确定系数(r2_score) from sklearn.metrics import r2_score r2_score(y_true, y_pred)

    作者:曦宝 链接:https://www.jianshu.com/p/c3cf5c6081ad 来源:简书 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

    Processed: 0.013, SQL: 9