哈希算法的确是个办法,但它有个明显的缺点:当需要变更集群数时(比如从 2 个集群扩展为 3 个集群),这时大部分的数据都需要迁移,重新映射,数据的迁移成本是非常高的。那么如何解决哈希算法,数据迁移成本高的痛点呢?答案就是一致哈希(Consistent Hashing)
一致哈希算法也用了取模运算,但与哈希算法不同的是,哈希算法是对节点的数量进行取模运算,而一致哈希算法是对 2^32 进行取模运算。你可以想象下,一致哈希算法,将整个哈希值空间组织成一个虚拟的圆环,也就是哈希环
在一致哈希中,你可以通过执行哈希算法(为了演示方便,假设哈希算法函数为“c-hash()”),将节点映射到哈希环上,比如选择节点的主机名作为参数执行 c-hash(),那么每个节点就能确定其在哈希环上的位置了
Gossip 的三板斧Gossip 的三板斧分别是:直接邮寄(Direct Mail)、反熵(Anti-entropy)和谣言传播(Rumor mongering)。
从图中你可以看到,节点 A 向节点 B、D 发送新数据,节点 B 收到新数据后,变成活跃节点,然后节点 B 向节点 C、D 发送新数据。其实,谣言传播非常具有传染性,它适合动态变化的分布式系统。
从图中你可以看到,数据修复的起始节点为节点 A,数据修复是按照顺时针顺序,循环修复的。需要你注意的是,最后节点 A 又对节点 B 的数据执行了一次数据修复操作,因为只有这样,节点 C 有、节点 B 缺失的差异数据,才会同步到节点 B 上
在 ZAB 中,写请求是必须在主节点上处理的,而且提案的广播和提交,也是由主节点来完成的。既然主节点那么重要,如果它突然崩溃宕机了,该怎么办呢?答案是选举出新的领导者(也就是新的主节点)