【计算题】(五)多元函数微积分学

    技术2024-11-09  25

    目录

    多元微分1. 极限偏导可微2. 复合函数求导3. 多元函数极值 多元积分1. 积分对称性2. 坐标系相互转换3. 交换积分次序

    多元微分

    1. 极限偏导可微

    证明二重极限: x = r c o s θ , y = r s i n θ x=rcos \theta,y=rsin \theta x=rcosθy=rsinθ

    I = lim ⁡ ( x , y ) → ( 0 , 0 ) x y 2 x 2 + y 4 I=\lim_{(x,y) \to (0,0)}\frac{xy^2}{x^2+y^4} I=lim(x,y)(0,0)x2+y4xy2 解:令 x = r c o s θ , y 2 = r s i n θ , θ ∈ ( 0 , π ) x=rcos \theta,y^{2}=rsin \theta,\theta \in (0, \pi) x=rcosθy2=rsinθθ(0,π) I = lim ⁡ r → 0 + r 2 c o s θ s i n θ r 2 = c o s θ s i n θ I = \lim_{r \to 0^{+}}\frac{r^{2}cos \theta sin \theta}{r^{2}} = cos\theta sin\theta I=r0+limr2r2cosθsinθ=cosθsinθ 因为 θ \theta θ 可取 ( 0 , π ) (0, \pi) (0,π) 内任意值(代表任意趋近路径),极限值不一致,所以极限不存在

    I = lim ⁡ ( x , y ) → ( 0 , 1 ) ln ⁡ ( 1 + x y ) x I=\lim_{(x,y) \to (0,1)}\frac{\ln (1+xy)}{x} I=lim(x,y)(0,1)xln(1+xy) 解:令 x = r c o s θ , y = r s i n θ + 1 x=rcos \theta,y=rsin \theta + 1 x=rcosθy=rsinθ+1 I = lim ⁡ r → 0 + ln ⁡ [ 1 + r c o s θ ( 1 + r s i n θ ) ] r c o s θ = lim ⁡ r → 0 + r c o s θ ( 1 + r s i n θ ) r c o s θ = 1 I = \lim_{r \to 0^{+} } \frac{\ln [1+rcos\theta(1+rsin\theta)] }{rcos\theta} =\lim_{r \to 0^{+} } \frac{rcos\theta(1+rsin\theta) }{rcos\theta} =1 I=r0+limrcosθln[1+rcosθ(1+rsinθ)]=r0+limrcosθrcosθ(1+rsinθ)=1

    连续: lim ⁡ ( x , y ) → ( x 0 , y 0 ) f ( x , y ) = f ( x 0 , y 0 ) \lim_{(x,y) \to (x_0,y_0)}f(x,y)=f(x_0,y_0) lim(x,y)(x0,y0)f(x,y)=f(x0,y0) 偏导:定义法求 f x ′ ( x 0 , y 0 ) , f y ′ ( x 0 , y 0 ) f_{x}^{'}(x_0,y_0),f_{y}^{'}(x_0,y_0) fx(x0,y0)fy(x0,y0) 偏导连续:

    定义法求 f x ′ ( x 0 , y 0 ) , f y ′ ( x 0 , y 0 ) f_{x}^{'}(x_0,y_0),f_{y}^{'}(x_0,y_0) fx(x0,y0)fy(x0,y0)公式法求 f x ′ ( x , y ) , f y ′ ( x , y ) f_{x}^{'}(x,y),f_{y}^{'}(x,y) fx(x,y)fy(x,y)计算 lim ⁡ ( x , y ) → ( x 0 , y 0 ) f x ′ ( x , y ) = f x ′ ( x 0 , y 0 ) , lim ⁡ ( x , y ) → ( x 0 , y 0 ) f y ′ ( x , y ) = f y ′ ( x 0 , y 0 ) \lim_{(x,y) \to (x_0,y_0)}f_{x}^{'}(x,y)=f_{x}^{'}(x_0,y_0), \lim_{(x,y) \to (x_0,y_0)}f_{y}^{'}(x,y)=f_{y}^{'}(x_0,y_0) lim(x,y)(x0,y0)fx(x,y)=fx(x0,y0)lim(x,y)(x0,y0)fy(x,y)=fy(x0,y0)

    可微:

    全增量 Δ z = f ( x 0 + Δ x , y 0 + Δ y ) − f ( x 0 , y 0 ) \Delta z=f(x_0+\Delta x, y_0+\Delta y)-f(x_0,y_0) Δz=f(x0+Δx,y0+Δy)f(x0,y0)线性增量 A Δ x + B Δ y A\Delta x + B\Delta y AΔx+BΔy,其中 A = f x ′ ( x 0 , y 0 ) A=f_{x}^{'}(x_0,y_0) A=fx(x0,y0) B = f y ′ ( x 0 , y 0 ) B=f_{y}^{'}(x_0,y_0) B=fy(x0,y0)计算 lim ⁡ ( Δ x , Δ y ) → ( 0 , 0 ) f x ′ ( x , y ) = Δ z − A Δ x + B Δ y ( Δ x ) 2 + ( Δ y ) 2 = 0 \lim_{(\Delta x,\Delta y) \to (0,0)}f_{x}^{'}(x,y) =\frac{\Delta z - A\Delta x + B\Delta y}{\sqrt{(\Delta x)^2+(\Delta y)^2} }=0 lim(Δx,Δy)(0,0)fx(x,y)=(Δx)2+(Δy)2 ΔzAΔx+BΔy=0

    z = f ( x , y ) = { ( x 2 + y 2 ) sin ⁡ 1 x 2 + y 2 x 2 + y 2 = 0 0 x 2 + y 2 ≠ 0 z=f(x,y) = \begin{cases} (x^{2}+y^{2})\sin \frac{1}{\sqrt{x^2+y^2} } & &{ x^{2}+y^{2}=0 } \\ 0& & { x^{2}+y^{2}≠0 } \end{cases} z=f(x,y)={(x2+y2)sinx2+y2 10x2+y2=0x2+y2=0, 则下列四个结论中, ( 1 ) f ( x , y ) 在 ( 0 , 0 ) 处 连 续 ; ( 2 ) f x ′ ( 0 , 0 ) , f y ′ ( 0 , 0 ) 存 在 ( 3 ) f x ′ ( x , y ) , f y ′ ( x , y ) 在 ( 0 , 0 ) 处 连 续 ( 4 ) f ( x , y ) 在 ( 0 , 0 ) 处 可 微 (1) f(x,y)在(0,0) 处连续;\qquad \qquad (2) f_{x}^{'}(0,0), f_{y}^{'}(0,0) 存在 \\ (3) f_{x}^{'}(x,y), f_{y}^{'}(x,y) 在(0,0)处连续 \qquad \quad (4) f(x,y) 在(0,0)处可微 (1)f(x,y)(0,0)(2)fx(0,0),fy(0,0)(3)fx(x,y),fy(x,y)(0,0)(4)f(x,y)(0,0)

    解:

    lim ⁡ ( x , y ) → ( 0 , 0 ) f ( x , y ) = lim ⁡ ( x , y ) → ( 0 , 0 ) ( x 2 + y 2 ) sin ⁡ 1 x 2 + y 2 = lim ⁡ r → 0 + r 2 sin ⁡ 1 r = 0 , f ( 0 , 0 ) = 0 , 结 论 ( 1 ) 正 确 \lim_{(x,y) \to (0,0)}f(x,y)=\lim_{(x,y) \to (0,0)}(x^{2}+y^{2})\sin \frac{1}{\sqrt{x^2+y^2}} =\lim_{r \to 0^{+} }r^{2} \sin \frac{1}{r} =0,f(0,0)=0,结论(1)正确 (x,y)(0,0)limf(x,y)=(x,y)(0,0)lim(x2+y2)sinx2+y2 1=r0+limr2sinr1=0f(0,0)=0(1) 定 义 法 f x ′ ( 0 , 0 ) = lim ⁡ Δ x → 0 f ( Δ x , 0 ) − f ( 0 , 0 ) Δ x = lim ⁡ Δ x → 0 ( Δ x ) 2 sin ⁡ 1 ∣ Δ x ∣ − 0 Δ x = 0 , f x ′ ( 0 , 0 ) 存 在 , f y ′ ( 0 , 0 ) 同 理 定义法f_{x}^{'}(0,0)=\lim_{\Delta x \to 0}\frac{f(\Delta x, 0)-f(0,0) }{\Delta x} =\lim_{\Delta x \to 0} \frac{ (\Delta x)^{2} \sin \frac{1}{|\Delta x|} - 0 }{\Delta x} =0,f_{x}^{'}(0,0)存在,f_{y}^{'}(0,0)同理 fx(0,0)=Δx0limΔxf(Δx,0)f(0,0)=Δx0limΔx(Δx)2sinΔx10=0fx(0,0)fy(0,0) 公 式 法 f x ′ ( x , y ) = 2 x sin ⁡ 1 x 2 + y 2 − x x 2 + y 2 cos ⁡ 1 x 2 + y 2 , 而 lim ⁡ ( x , y ) → ( 0 , 0 ) x x 2 + y 2 cos ⁡ 1 x 2 + y 2 不 ∃ 公式法f_{x}^{'}(x,y) =2x\sin \frac{1}{\sqrt{x^2+y^2} }-\frac{x}{\sqrt{x^2+y^2} }\cos \frac{1}{\sqrt{x^2+y^2} },而 \lim_{(x,y) \to (0,0)} \frac{x}{\sqrt{x^2+y^2} }\cos \frac{1}{\sqrt{x^2+y^2} }不\exists fx(x,y)=2xsinx2+y2 1x2+y2 xcosx2+y2 1(x,y)(0,0)limx2+y2 xcosx2+y2 1 f x ′ ( 0 , 0 ) = 0 , f y ′ ( 0 , 0 ) = 0 , ( Δ x ) 2 + ( Δ y ) 2 = r , Δ z = f ( 0 + Δ x , 0 + Δ y ) − f ( 0 , 0 ) = r 2 sin ⁡ 1 r f_{x}^{'}(0,0)=0,f_{y}^{'}(0,0)=0,\sqrt{(\Delta x)^{2}+(\Delta y)^{2}} = r,\Delta z=f(0+\Delta x, 0+\Delta y) -f(0,0)=r^{2}\sin \frac{1}{r} fx(0,0)=0fy(0,0)=0(Δx)2+(Δy)2 =rΔz=f(0+Δx,0+Δy)f(0,0)=r2sinr1 lim ⁡ ( Δ x , Δ y ) → ( 0 , 0 ) Δ z − f x ′ ( 0 , 0 ) Δ x − f y ′ ( 0 , 0 ) Δ y ( Δ x ) 2 + ( Δ y ) 2 = lim ⁡ r → 0 + r 2 sin ⁡ 1 r r = 0 , 可 微 \lim_{(\Delta x, \Delta y) \to(0,0)} \frac{\Delta z - f_{x}^{'}(0,0)\Delta x-f_{y}^{'}(0,0)\Delta y}{ \sqrt{(\Delta x)^{2}+(\Delta y)^{2}} } =\lim_{r \to 0^{+} }\frac{r^{2}\sin \frac{1}{r} }{r}=0,可微 (Δx,Δy)(0,0)lim(Δx)2+(Δy)2 Δzfx(0,0)Δxfy(0,0)Δy=r0+limrr2sinr1=0

    2. 复合函数求导

    具体函数链式求偏导

    z = e u sin ⁡ v , u = x y , v = x + y z=e^{u}\sin v, u=xy,v=x+y z=eusinv,u=xy,v=x+y,求 ∂ z ∂ x \frac{\partial z}{\partial x} xz ∂ z ∂ y \frac{\partial z}{\partial y} yz 解: ∂ z ∂ x = y e u sin ⁡ v + e u cos ⁡ v = y e x y sin ⁡ ( x + y ) + e x y cos ⁡ ( x + y ) \frac{\partial z}{\partial x} =ye^{u}\sin v+e^{u}\cos v=ye^{xy}\sin (x+y)+e^{xy}\cos (x+y) xz=yeusinv+eucosv=yexysin(x+y)+exycos(x+y)

    抽象函数使用符号 f ′ f^{'} f

    z = f ( x + y , x ) z=f(x+y, x) z=f(x+y,x) ∂ z ∂ x \frac{\partial z}{\partial x} xz ∂ z ∂ y \frac{\partial z}{\partial y} yz ∂ z ∂ x = f 1 ′ + f 2 ′ , ∂ z ∂ y = f 1 ′ \frac{\partial z}{\partial x}=f_{1}^{'}+f_{2}^{'},\frac{\partial z}{\partial y}=f_{1}^{'} xz=f1+f2yz=f1 z = f ( x + y , f ( x , y ) ) z=f(x+y, f(x,y)) z=f(x+y,f(x,y)),求 ∂ z ∂ x \frac{\partial z}{\partial x} xz ∂ z ∂ y \frac{\partial z}{\partial y} yz ∂ z ∂ x = f 1 ′ ( x + y , f ( x , y ) ) + f 2 ′ ( x + y , f ( x , y ) ) ⋅ f 1 ′ ( x , y ) ∂ z ∂ y = f 1 ′ ( x + y , f ( x , y ) ) + f 2 ′ ( x + y , f ( x , y ) ) ⋅ f 2 ′ ( x , y ) \frac{\partial z}{\partial x}=f_{1}^{'}(x+y, f(x,y))+f_{2}^{'}(x+y, f(x,y))·f_{1}^{'}(x,y) \\ \frac{\partial z}{\partial y}=f_{1}^{'}(x+y, f(x,y))+f_{2}^{'}(x+y, f(x,y))·f_{2}^{'}(x,y) xz=f1(x+y,f(x,y))+f2(x+y,f(x,y))f1(x,y)yz=f1(x+y,f(x,y))+f2(x+y,f(x,y))f2(x,y)

    隐函数全微分求偏导

    设方程 F ( y x , z x ) = 0 F(\frac{y}{x}, \frac{z}{x}) = 0 F(xy,xz)=0 确定隐函数 z = f ( x , y ) z=f(x,y) z=f(x,y),其中 F F F 具有连续的一阶偏导数,求 ∂ z ∂ x \frac{\partial z}{\partial x} xz ∂ z ∂ y \frac{\partial z}{\partial y} yz

    解:方程两边求全微分, F 1 ′ ( 1 x d y − y x 2 d x ) + F 2 ′ ( 1 x d z − z x 2 d x ) = 0 F_{1}^{'}(\frac{1}{x}dy-\frac{y}{x^2}dx)+F_{2}^{'}(\frac{1}{x}dz-\frac{z}{x^{2}}dx)=0 F1(x1dyx2ydx)+F2(x1dzx2zdx)=0 d z = y F 1 ′ + z F 2 ′ x F 2 ′ d x − F 1 ′ F 2 ′ d y = ∂ z ∂ x d x + ∂ z ∂ y d y dz=\frac{yF_{1}^{'}+zF_{2}^{'}}{xF_{2}^{'}}dx-\frac{F_{1}^{'}}{F_{2}^{'}}dy=\frac{\partial z}{\partial x}dx+\frac{\partial z}{\partial y}dy dz=xF2yF1+zF2dxF2F1dy=xzdx+yzdy

    3. 多元函数极值

    拉格朗日乘数法:

    方程组容易消,消 λ \lambda λ难消且齐次,欧拉定理、行列式求 λ \lambda λ难消且非齐次,改用直接代入法

    求函数 u = x 2 + y 2 + z 2 u=x^2+y^2+z^2 u=x2+y2+z2 在约束条件 { z = x 2 + y 2 x + y + z = 4 \begin{cases} z = x^2+y^2 \\ x+y+z=4 \end{cases} {z=x2+y2x+y+z=4 最大值和最小值 解:记 F ( x , y , z , λ , μ ) = x 2 + y 2 + z 2 + λ ( x 2 + y 2 − z ) + μ ( x + y + z − 4 ) F(x,y,z,\lambda,\mu) =x^2+y^2+z^2+\lambda(x^2+y^2-z)+\mu(x+y+z-4) F(x,y,z,λ,μ)=x2+y2+z2+λ(x2+y2z)+μ(x+y+z4); 令 { F x ′ = 2 x + 2 λ x + μ = 0 ① F y ′ = 2 y + 2 λ y + μ = 0 ② F z ′ = 2 z − λ + μ = 0 ③ F λ ′ = x 2 + y 2 − z = 0 ④ F μ ′ = x + y + z − 4 = 0 ⑤ \begin{cases} F_{x}^{'}=2x+2 \lambda x+\mu=0 & \text{①}\\ F_{y}^{'}=2y+2 \lambda y+\mu=0 & \text{②}\\ F_{z}^{'}=2z-\lambda +\mu=0 & \text{③}\\ F_{\lambda}^{'}=x^2+y^2-z=0 & \text{④}\\ F_{\mu}^{'}=x+y+z-4=0 & \text{⑤}\\ \end{cases} Fx=2x+2λx+μ=0Fy=2y+2λy+μ=0Fz=2zλ+μ=0Fλ=x2+y2z=0Fμ=x+y+z4=0 ① − ② ①-② 可得, ( x − y ) ( 1 + λ ) = 0 (x-y)(1+\lambda)=0 (xy)(1+λ)=0 λ = − 1 \lambda = -1 λ=1 时, μ = 0 , z = − 1 2 \mu=0,z=-\frac{1}{2} μ=0z=21 z > 0 z>0 z>0 ④ ④ 矛盾 若 λ ≠ − 1 \lambda ≠ -1 λ=1 时, x = y x=y x=y ④ ④ ⑤ ⑤ 可得 x 1 = 1 x_1=1 x1=1 x 2 = − 2 x_2=-2 x2=2 解方程组得最大值点 ( − 2 , − 2 , 8 ) (-2, -2, 8) (2,2,8),最大值时72;最小值点 ( 1 , 1 , 2 ) (1, 1, 2) (1,1,2),最小值时6

    求函数 u = x y + 2 y z u=xy+2yz u=xy+2yz 在约束条件 x 2 + y 2 + z 2 = 10 x^2+y^2+z^2=10 x2+y2+z2=10 最大值和最小值 解:记 F ( x , y , z , λ ) = x y + 2 y z + λ ( x 2 + y 2 + z 2 − 10 ) F(x,y,z,\lambda) =xy+2yz+\lambda(x^2+y^2+z^2-10) F(x,y,z,λ)=xy+2yz+λ(x2+y2+z210); 令 { F x ′ = y + 2 λ x = 0 ① F y ′ = x + 2 z + 2 λ y = 0 ② F z ′ = 2 y + 2 λ z = 0 ③ F λ ′ = x 2 + y 2 + z 2 − 10 = 0 ④ \begin{cases} F_{x}^{'}=y+2 \lambda x=0 & \text{①}\\ F_{y}^{'}=x+2z+2 \lambda y=0 & \text{②}\\ F_{z}^{'}=2y+2\lambda z=0 & \text{③}\\ F_{\lambda}^{'}=x^2+y^2+z^2-10=0 & \text{④}\\ \end{cases} Fx=y+2λx=0Fy=x+2z+2λy=0Fz=2y+2λz=0Fλ=x2+y2+z210=0 难消且齐次,欧拉定理, x F x ′ + y F y ′ + z F z ′ = ( x y + 2 y z ) + λ ( x 2 + y 2 + z 2 ) = 0 xF_{x}^{'}+yF_{y}^{'}+zF_{z}^{'}=(xy+2yz)+\lambda(x^2+y^2+z^2)=0 xFx+yFy+zFz=(xy+2yz)+λ(x2+y2+z2)=0,即 x y + 2 y z = − 10 λ xy+2yz=-10\lambda xy+2yz=10λ 约束条件 x 2 + y 2 + z 2 = 10 x^2+y^2+z^2=10 x2+y2+z2=10,说明 x , y , z x,y,z x,y,z 不可以同时为 0 0 0,线性方程组有非零解,即 ∣ A ∣ = ∣ 2 λ 1 0 1 2 λ 2 0 2 2 λ ∣ = 2 λ ( 4 λ 2 − 5 ) = 0 |A| = \left| \begin{matrix} 2\lambda & 1 & 0 \\ 1 & 2\lambda & 2 \\ 0 & 2 & 2\lambda \end{matrix} \right|=2\lambda(4\lambda^2-5)=0 A=2λ1012λ2022λ=2λ(4λ25)=0 故, λ 1 = 0 , λ 2 = 5 2 , λ 3 = − 5 2 \lambda_1=0,\lambda_2=\frac{\sqrt{5} }{2},\lambda_3=-\frac{\sqrt{5} }{2} λ1=0λ2=25 λ3=25 ,于是 u m a x = 5 5 , u m i n = − 5 5 u_{max}=5\sqrt{5},u_{min}=-5\sqrt{5} umax=55 umin=55

    求函数 f ( x , y ) = x 2 + 2 y 2 − x 2 y 2 f(x,y)=x^2+2y^2-x^2y^2 f(x,y)=x2+2y2x2y2 在约束条件 x 2 + y 2 = 4 x^2+y^2=4 x2+y2=4 最大值和最小值 解:记 F ( x , y λ ) = x 2 + 2 y 2 − x 2 y 2 + λ ( x 2 + y 2 − 4 ) F(x,y\lambda) =x^2+2y^2-x^2y^2+\lambda(x^2+y^2-4) F(x,yλ)=x2+2y2x2y2+λ(x2+y24); 令 { F x ′ = 2 x − 2 x y 2 + 2 λ x = 0 ① F y ′ = 4 y − 2 x 2 y + 2 λ y = 0 ② F λ ′ = x 2 + y 2 − 4 = 0 ③ \begin{cases} F_{x}^{'}=2x-2xy^2+2\lambda x = 0 & \text{①}\\ F_{y}^{'}=4y-2x^2y+2\lambda y =0 & \text{②}\\ F_{\lambda}^{'}=x^2+y^2-4=0 & \text{③}\\ \end{cases} Fx=2x2xy2+2λx=0Fy=4y2x2y+2λy=0Fλ=x2+y24=0 难消且非齐次,改用直接代入法 y 2 = 4 − x 2 y^2=4-x^2 y2=4x2 h ( x ) = x 2 + 2 ( 4 − x 2 ) − x 2 ( 4 − x 2 ) = x 4 − 5 x 2 + 8 , − 2 ≤ x ≤ 2 h(x) = x^2+2(4-x^2)-x^2(4-x^2)=x^4-5x^2+8,-2≤x≤2 h(x)=x2+2(4x2)x2(4x2)=x45x2+82x2 h ′ ( x ) = 4 x 3 − 10 x = 0 h^{'}(x)=4x^3-10x=0 h(x)=4x310x=0,得 x 1 = 0 , x 2 = ± 5 2 x_1=0,x_2=± \sqrt{ \frac{5}{2}} x1=0x2=±25 ,对应 y y y 分别是 y 1 = ± 2 , y 2 = ± 3 2 y_1=±2,y_2=± \sqrt{ \frac{3}{2}} y1=±2y2=±23 对应函数值分别是 f ( 0 , ± 2 ) = 8 , f ( ± 5 2 , ± 3 2 ) = 7 4 f(0,±2)=8,f(± \sqrt{ \frac{5}{2}},± \sqrt{ \frac{3}{2}})=\frac{7}{4} f(0,±2)=8f(±25 ,±23 )=47,同时边界点的函数值为 f ( ± 2 , 0 ) = 4 f(±2,0)=4 f(±2,0)=4 所以最大值是 f ( 0 , ± 2 ) = 8 f(0,±2)=8 f(0,±2)=8 和最小值是 f ( ± 5 2 , ± 3 2 ) = 7 4 f(± \sqrt{ \frac{5}{2}},± \sqrt{ \frac{3}{2}})=\frac{7}{4} f(±25 ,±23 )=47

    多元积分

    1. 积分对称性

    普通对称性

    ∬ D y x e x 2 + y 2 2 d x d y \iint_{D} yxe^{\frac{x^2+y^2}{2} }dxdy Dyxe2x2+y2dxdy,其中区域 D D D 由直线 y = x , y = − 1 y=x,y=-1 y=xy=1 x = 1 x=1 x=1 围成 解: 积分区域 D D D 可通过 y = − x y=-x y=x 划分为两个区域 D 1 D_1 D1 D 2 D_2 D2,分别关于 x x x 轴和 y y y 轴对称,被积函数是关于 y y y x x x 的奇函数,故结果为 0 0 0

    ∬ D sin ⁡ ( x 3 + y 3 ) d x d y , D = { ( x , y ) ∣ ∣ x ∣ + ∣ y ∣ ≤ 1 } \iint_{D} \sin (x^3+y^3)dxdy, D=\{(x,y) | |x|+|y|≤1\} Dsin(x3+y3)dxdyD={(x,y)x+y1} 解:区域 D D D 关于原点对称, x → − x , y → − y x \to -x,y \to -y xxyy I = ∬ D sin ⁡ ( x 3 + y 3 ) d x d y = ∬ D sin ⁡ ( − x 3 − y 3 ) d x d y = − I I=\iint_{D} \sin (x^3+y^3)dxdy =\iint_{D} \sin (-x^3-y^3)dxdy=-I I=Dsin(x3+y3)dxdy=Dsin(x3y3)dxdy=I I = 0 I=0 I=0

    轮换对称性

    ∬ D a f ( x ) + b f ( y ) f ( x ) + f ( y ) d σ , D = { ( x , y ) ∣ x 2 + y 2 ≤ 1 , x ≥ 0 , y ≥ 0 } \iint_{D} \frac{a\sqrt{f(x)} + b\sqrt{f(y)} }{\sqrt{f(x)} + \sqrt{f(y)}}d\sigma, D=\{(x,y) | x^2+y^2≤1,x≥0,y≥0\} Df(x) +f(y) af(x) +bf(y) dσD={(x,y)x2+y21x0y0} 解:区域 D D D 关于 y = x y=x y=x 对称, x → y , y → x x \to y,y \to x xyyx I = ∬ D a f ( x ) + b f ( y ) f ( x ) + f ( y ) d σ = ∬ D a f ( y ) + b f ( x ) f ( y ) + f ( x ) d σ I=\iint_{D} \frac{a\sqrt{f(x)} + b\sqrt{f(y)} }{\sqrt{f(x)} + \sqrt{f(y)}}d\sigma =\iint_{D} \frac{a\sqrt{f(y)} + b\sqrt{f(x)} }{\sqrt{f(y)} + \sqrt{f(x)}}d\sigma I=Df(x) +f(y) af(x) +bf(y) dσ=Df(y) +f(x) af(y) +bf(x) dσ 2 I = ∬ D ( a + b ) f ( y ) + b f ( x ) f ( y ) + f ( x ) d σ = ( a + b ) ∬ D d σ 2I=\iint_{D} \frac{(a+b)\sqrt{f(y)} + b\sqrt{f(x)} }{\sqrt{f(y)} + \sqrt{f(x)}}d\sigma =(a+b)\iint_{D}d\sigma 2I=Df(y) +f(x) (a+b)f(y) +bf(x) dσ=(a+b)Ddσ I = 1 8 ( a + b ) π I=\frac{1}{8}(a+b)\pi I=81(a+b)π

    ∬ D sin ⁡ ( x 3 + y 3 ) d x d y , D = { ( x , y ) ∣ ∣ x ∣ + ∣ y ∣ ≤ 1 } \iint_{D} \sin (x^3+y^3)dxdy, D=\{(x,y) | |x|+|y|≤1\} Dsin(x3+y3)dxdyD={(x,y)x+y1} 解:区域 D D D 关于 y = − x y=-x y=x 对称, x → − y , y → − x x \to -y,y \to -x xyyx I = ∬ D sin ⁡ ( x 3 + y 3 ) d x d y = ∬ D sin ⁡ ( − y 3 − x 3 ) d x d y = − I I=\iint_{D} \sin (x^3+y^3)dxdy =\iint_{D} \sin (-y^3-x^3)dxdy=-I I=Dsin(x3+y3)dxdy=Dsin(y3x3)dxdy=I I = 0 I=0 I=0

    2. 坐标系相互转换

    直角坐标系 → \to 极坐标系:区域 D D D 为圆/扇形,被积函数为 f ( x y ) 、 f ( y x ) 、 f ( x 2 + y 2 ) f(\frac{x}{y})、f(\frac{y}{x})、f(x^2+y^2) f(yx)f(xy)f(x2+y2)

    ∬ D e x y d x d y , D = { ( x , y ) ∣ 0 ≤ y ≤ x , 1 ≤ x ≤ 2 } \iint_{D} e^{\frac{x}{y} } dxdy, D=\{(x,y) | 0≤y≤x,1≤x≤2\} DeyxdxdyD={(x,y)0yx1x2} 解:被积函数含有 x y \frac{x}{y} yx,直角坐标系转换为极坐标系 D = { ( r , θ ) ∣ 1 cos ⁡ θ ≤ r ≤ 2 cos ⁡ θ , 0 ≤ θ ≤ π 4 } D=\{(r,\theta)|\frac{1}{\cos \theta} ≤ r ≤ \frac{2}{\cos \theta},0≤\theta≤\frac{\pi}{4} \} D={(r,θ)cosθ1rcosθ20θ4π} ∬ D e x y d x d y = ∫ 0 π 4 e tan ⁡ θ d θ ∫ 1 cos ⁡ θ 2 cos ⁡ θ r d r = 3 2 ( e − 1 ) \iint_{D} e^{\frac{x}{y} } dxdy =\int_{0}^{\frac{\pi}{4} }e^{\tan \theta}d\theta \int_{\frac{1}{\cos \theta} }^{\frac{2}{\cos \theta} }rdr=\frac{3}{2}(e-1) Deyxdxdy=04πetanθdθcosθ1cosθ2rdr=23(e1)

    极坐标系 → \to 直角坐标系:区域 D D D 为不是圆/扇形,被积函数不为 f ( x y ) 、 f ( y x ) 、 f ( x 2 + y 2 ) f(\frac{x}{y})、f(\frac{y}{x})、f(x^2+y^2) f(yx)f(xy)f(x2+y2)

    I = ∬ D 1 − r 2 cos ⁡ 2 θ r 2 sin ⁡ θ d r d θ , D = { ( r , θ ) ∣ 0 ≤ r ≤ sec ⁡ θ , 0 ≤ θ ≤ π 4 } I = \iint_{D} \sqrt{1-r^2\cos2\theta}r^2\sin \theta drd \theta, D=\{(r,\theta) | 0≤r≤\sec \theta,0≤\theta≤\frac{\pi}{4}\} I=D1r2cos2θ r2sinθdrdθD={(r,θ)0rsecθ0θ4π} 解:区域 D D D 和被积函数不符合条件,极坐标系转换为直角坐标系 D = { ( x , y ) ∣ 0 ≤ x ≤ 1 , 0 ≤ y ≤ x } D=\{(x,y)| 0≤ x ≤ 1,0≤y≤x \} D={(x,y)0x10yx} I = ∬ D r 2 sin ⁡ θ 1 − r 2 cos ⁡ 2 θ + r 2 sin ⁡ 2 θ d r d θ = ∬ D y 1 − x 2 + y 2 d x d y = 1 2 ∫ 0 1 d x ∫ 0 x 1 − x 2 + y 2 d ( 1 − x 2 + y 2 ) = 1 3 ∫ 0 1 [ 1 − ( 1 − x 2 ) 3 2 ] = 1 3 − π 16 I =\iint_{D} r^2\sin \theta \sqrt{1-r^2\cos^2\theta+r^2\sin^2\theta}drd \theta =\iint_{D} y\sqrt{1-x^2+y^2}dxdy \\ =\frac{1}{2}\int_{0}^{1}dx\int_{0}^{x}\sqrt{1-x^2+y^2} d(1-x^2+y^2) =\frac{1}{3}\int_{0}^{1} [1-(1-x^2)^{\frac{3}{2}}] =\frac{1}{3}-\frac{\pi}{16} I=Dr2sinθ1r2cos2θ+r2sin2θ drdθ=Dy1x2+y2 dxdy=2101dx0x1x2+y2 d(1x2+y2)=3101[1(1x2)23]=3116π

    3. 交换积分次序

    ∫ 0 1 d y ∫ 0 y f ( x , y ) d x = ∫ 0 1 d x ∫ 0 x f ( x , y ) d x \int_{0}^{1 }dy \int_{0}^{y} f(x,y)dx =\int_{0}^{1 }dx \int_{0}^{x} f(x,y)dx 01dy0yf(x,y)dx=01dx0xf(x,y)dx

    ∫ − π 4 π 2 d θ ∫ 0 2 c o s θ f ( r c o s θ , r s i n θ ) r d r = ∫ 0 2 r d r ∫ − π 4 a r c c o s r 2 f ( r c o s θ , r s i n θ ) d θ + ∫ 2 2 d θ ∫ − a r c c o s r 2 a r c c o s r 2 f ( r c o s θ , r s i n θ ) r d r \int_{-\frac{\pi}{4} }^{\frac{\pi}{2} }dθ \int_{0}^{2cosθ} f(rcosθ, rsinθ)rdr = \int_{0}^{\sqrt{2} } rdr \int_{-\frac{\pi}{4} }^{arccos\frac{r}{2} } f(rcosθ, rsinθ)dθ + \int_{\sqrt{2}}^{2}dθ \int_{-arccos\frac{r}{2}}^{arccos\frac{r}{2}} f(rcosθ, rsinθ)rdr 4π2πdθ02cosθf(rcosθ,rsinθ)rdr=02 rdr4πarccos2rf(rcosθ,rsinθ)dθ+2 2dθarccos2rarccos2rf(rcosθ,rsinθ)rdr

    Processed: 0.014, SQL: 9