用了日志系统新贵Loki,ELK突然不香了!

    技术2024-11-21  20

    点击蓝色“架构文摘”关注我哟

    加个“星标”,每天上午 09:25,干货推送!

    作者:linkt1234

    转自:51CTO

    出处:http://blog.csdn.net/Linkthaha/article/details/100575651

    背景和动机

    当我们的容器云运行的应用或者某个节点出现问题了,解决思路应该如下:

    我们的监控使用的是基于 Prometheus 体系进行改造的,Prometheus 中比较重要的是 Metric 和 Alert。

    Metric 是来说明当前或者历史达到了某个值,Alert 设置 Metric 达到某个特定的基数触发了告警,但是这些信息明显是不够的。

    我们都知道,Kubernetes 的基本单位是 Pod,Pod 把日志输出到 stdout 和 stderr,平时有什么问题我们通常在界面或者通过命令查看相关的日志。

    举个例子:当我们的某个 Pod 的内存变得很大,触发了我们的 Alert,这个时候管理员,去页面查询确认是哪个 Pod 有问题,然后要确认 Pod 内存变大的原因。

    我们还需要去查询 Pod 的日志,如果没有日志系统,那么我们就需要到页面或者使用命令进行查询了:

    如果,这个时候应用突然挂了,这个时候我们就无法查到相关的日志了,所以需要引入日志系统,统一收集日志。

    而使用 ELK 的话,就需要在 Kibana 和 Grafana 之间切换,影响用户体验。

    所以 ,Loki 的第一目的就是最小化度量和日志的切换成本,有助于减少异常事件的响应时间和提高用户的体验。

    ELK 存在的问题

    现有的很多日志采集的方案都是采用全文检索对日志进行索引(如 ELK 方案),优点是功能丰富,允许复杂的操作。但是,这些方案往往规模复杂,资源占用高,操作苦难。

    很多功能往往用不上,大多数查询只关注一定时间范围和一些简单的参数(如 host、service 等),使用这些解决方案就有点杀鸡用牛刀的感觉了。

    因此,Loki 的第二个目的是,在查询语言的易操作性和复杂性之间可以达到一个权衡。

    成本

    全文检索的方案也带来成本问题,简单的说就是全文搜索(如 ES)的倒排索引的切分和共享的成本较高。

    后来出现了其他不同的设计方案如:OKlog(https://github.com/oklog/oklog),采用最终一致的、基于网格的分布策略。

    这两个设计决策提供了大量的成本降低和非常简单的操作,但是查询不够方便。因此,Loki 的第三个目的是,提高一个更具成本效益的解决方案。

    整体架构

    Loki 的架构如下:

    不难看出,Loki 的架构非常简单,使用了和 Prometheus 一样的标签来作为索引。

    也就是说,你通过这些标签既可以查询日志的内容也可以查询到监控的数据,不但减少了两种查询之间的切换成本,也极大地降低了日志索引的存储。

    Loki 将使用与 Prometheus 相同的服务发现和标签重新标记库,编写了 Pormtail,在 Kubernetes 中 Promtail 以 DaemonSet 方式运行在每个节点中,通过 Kubernetes API 等到日志的正确元数据,并将它们发送到 Loki。

    下面是日志的存储架构:

    读写

    日志数据的写主要依托的是 Distributor 和 Ingester 两个组件,整体的流程如下:

     

    Distributor

    一旦 Promtail 收集日志并将其发送给 Loki,Distributor 就是第一个接收日志的组件。

    由于日志的写入量可能很大,所以不能在它们传入时将它们写入数据库。这会毁掉数据库。我们需要批处理和压缩数据。

    Loki 通过构建压缩数据块来实现这一点,方法是在日志进入时对其进行 Gzip 操作,组件 Ingester 是一个有状态的组件,负责构建和刷新 Chunck,当 Chunk 达到一定的数量或者时间后,刷新到存储中去。

    每个流的日志对应一个 Ingester,当日志到达 Distributor 后,根据元数据和 Hash 算法计算出应该到哪个 Ingester 上面。

    此外,为了冗余和弹性,我们将其复制 n(默认情况下为 3)次。

     

    Ingester

    Ingester 接收到日志并开始构建 Chunk:

    基本上就是将日志进行压缩并附加到 Chunk 上面。一旦 Chunk“填满”(数据达到一定数量或者过了一定期限),Ingester 将其刷新到数据库。

    我们对块和索引使用单独的数据库,因为它们存储的数据类型不同。

    刷新一个 Chunk 之后,Ingester 然后创建一个新的空 Chunk 并将新条目添加到该 Chunk 中。

    Querier

    读取就非常简单了,由 Querier 负责给定一个时间范围和标签选择器,Querier 查看索引以确定哪些块匹配,并通过 greps 将结果显示出来。它还从 Ingester 获取尚未刷新的最新数据。

    对于每个查询,一个查询器将为您显示所有相关日志。实现了查询并行化,提供分布式 grep,使即使是大型查询也是足够的。

    可扩展性

    Loki 的索引存储可以是 cassandra/bigtable/dynamodb,而 Chuncks 可以是各种对象存储,Querier 和 Distributor 都是无状态的组件。

    对于 Ingester 他虽然是有状态的但是,当新的节点加入或者减少,整节点间的 Chunk 会重新分配,已适应新的散列环。

    而 Loki 底层存储的实现 Cortex 已经在实际的生产中投入使用多年了。有了这句话,我可以放心的在环境中实验一把了。

    end

    推荐阅读:

    搞懂这 9 个步骤,DNS 访问原理就明明白白了

    注意:Apache Dubbo 远程代码执行漏洞通告!

    应该选择RabbitMQ还是Kafka?

    前后端分离模式下的权限设计方案

    究竟什么是图数据库,它有哪些应用场景?

    如有收获,点个在看,诚挚感谢

    Processed: 0.036, SQL: 9