点击上方“3D视觉工坊”,选择“星标”
干货第一时间送达
模仿是最原始的学习方法,也是实现人工智能的基石。
通过深度学习和算法,机器人也可以通过看视频学会各种各样的技能。
先看个图:
是不是觉得有点眼熟。
没错,它就是技艺高超,被大家所熟知的达芬奇机器人。
这次它又被赋予了新功能:通过观看教学视频,学会外科手术中的相关任务。比如缝合,穿针,以及打结等动作。
让达芬奇机器人变成‘模仿艺人’的关键,是一个叫做Motion2Vec的半监督式学习算法,近日由谷歌大脑,英特尔公司和加利福尼亚大学伯克利分校合作开发。
起初,加州大学伯克利分校的教授曾使用YouTube视频作为机器人学习各种动作(例如跳跃或跳舞)的指南。机器人模仿视频中的动作,成功学习了20多种杂技,比如侧空翻、单手翻、后空翻等高难度动作。
谷歌此前也有过相关研究,例如使用视频来教授四足机器人学习狗狗的灵活动作。
这些经历促成了他们彼此的合作,他们将这些知识应用于最新项目Motion2Vec中,在这个过程中,使用了实际手术过程的视频进行指导和训练。
在最近发布的论文中,研究人员概述了他们如何使用YouTube视频训练两臂的达芬奇机器人在织布机上插入针头并进行缝合。
人类在看视频的时候可以迅速理解内容,但机器人目前无法做到这一点,它们只是将其视为像素流。因此,要以机器人的方式让他们理解并学习——弄清并分析这些像素,然后将视频分割成有意义的序列。
事实上,Motion2Vec算法的开发主要基于暹罗网络和递归神经网络。
暹罗网络(Siamesenetwork)就是“连体的神经网络”,神经网络的“连体”是通过共享权值来实现的。它的主要功能是衡量两个物体的相似度。比如,看看某两个人长得像不像。
这样,研究人员就可以将视频中相同动作段的图像放到一起,并给它们做一个标记,比如‘针头插入’,或‘瞄准位置’等,从而对视频中的图像进行分割和分类。
然后,研究人员使用递归神经网络来找到那些没有被标记的图像,这些图像会反馈到暹罗网络中以改善动作片段的比对。
对于缝合任务,研究团队仅需要78个教学医学视频即可训练其AI引擎执行该过程,成功率为85%。
这似乎意味着机器人可以在外科手术中承担一些更基本,重复性的任务,但它们目前还无法完全代替医生来做手术。
加州大学伯克利分校实验室的负责人KenGoldberg解释说“我们想要看到的是,机器人在做基本缝合任务,而外科医生能够监视手术过程,比如像机器人表明他们想要在哪一排进行缝合,或传达出希望进行六次覆膜缝合的想法。” “这样,机器人能代替外科医生做最基本的任务,让医生们得到更多的休息,并能够专注于手术中更复杂或更细微的部分。”
论文直通车
论文题目:
Motion2Vec:Semi-Supervised Representation Learning from Surgical Videos
论文链接:
http://www.ajaytanwani.com/docs/Tanwani_Motion2Vec_arxiv_2020.pdf
项目来源:
https://sites.google.com/view/motion2vec
END
推荐阅读:
专辑|相机标定
专辑|3D点云
专辑|SLAM
专辑|深度学习与自动驾驶
专辑|结构光
专辑|事件相机
专辑|OpenCV学习
专辑|学习资源汇总
专辑|招聘与项目对接
专辑|读书笔记
重磅!3DCVer-学术论文写作投稿 交流群已成立
扫码添加小助手微信,可申请加入3D视觉工坊-学术论文写作与投稿 微信交流群,旨在交流顶会、顶刊、SCI、EI等写作与投稿事宜。
同时也可申请加入我们的细分方向交流群,目前主要有3D视觉、CV&深度学习、SLAM、三维重建、点云后处理、自动驾驶、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、学术交流、求职交流等微信群,请扫描下面微信号加群,备注:”研究方向+学校/公司+昵称“,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进去相关微信群。原创投稿也请联系。
▲长按加微信群或投稿
▲长按关注公众号
3D视觉从入门到精通知识星球:针对3D视觉领域的知识点汇总、入门进阶学习路线、最新paper分享、疑问解答四个方面进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,近1000+星球成员为创造更好的AI世界共同进步,知识星球入口:
学习3D视觉核心技术,扫描查看介绍,3天内无条件退款
圈里有高质量教程资料、可答疑解惑、助你高效解决问题
3D视觉工坊 认证博客专家 算法 3D视觉 个人公众号:3D视觉工坊。公众号特邀嘉宾及合伙人,先后就职于国内知名研究机构、自动驾驶公司、海康研究院,主要研究方向为深度学习、目标检测、语义分割、图像处理、自动驾驶感知算法等,博客专家。博主先后任职于国内知名研究院、知名大厂,致力于3D视觉算法、VLAM算法开发,涉及相机标定、手眼标定、结构光、点云后处理、三维重建等相关领域的研究,同时也是博客专家。3D视觉工坊坚持原创,近一年来输出了非常多的高质量文章,获得了粉丝的一致好评,我们将始终坚持走原创路线,打造一个铁杆粉丝的聚集区。