严格意义上来说这个新闻的数据集不是太好,每个类目的新闻数目不是一致的,一个好的数据集对于各个类别分布是比较均匀的。
定义网络
定义损失函数:交叉熵损失函数
定义优化算法:选择优化器,adam,SGD等等
需要对网络进行训练,丢入训练集,去训练我们的模型
创建好的字典:每一个字会对应一个数字ID
创建好的数据列表:文本转化为序列化的表示
每一行代表一句新闻,就是一个样本。
paddle.reader.xmap_readers():通过多线程方式,通过用户自定义的映射器mapper来映射reader返回的样本(到输出队列)。
# 创建数据读取器train_reader 和test_reader # 训练/测试数据的预处理 def data_mapper(sample): data, label = sample data = [int(data) for data in data.split(',')] return data, int(label) # 创建数据读取器train_reader def train_reader(train_list_path): def reader(): with open(train_list_path, 'r') as f: lines = f.readlines() # 打乱数据 np.random.shuffle(lines) # 开始获取每张图像和标签 for line in lines: data, label = line.split('\t') yield data, label return paddle.reader.xmap_readers(data_mapper, reader, cpu_count(), 1024) # 创建数据读取器test_reader def test_reader(test_list_path): def reader(): with open(test_list_path, 'r') as f: lines = f.readlines() for line in lines: data, label = line.split('\t') yield data, label return paddle.reader.xmap_readers(data_mapper, reader, cpu_count(), 1024)至此,数据准备工作已经完成了。
输入词向量序列,产生一个特征图(feature map),对特征图采用时间维度上的最大池化(max pooling over time)操作得到此卷积核对应的整句话的特征,最后,将所有卷积核得到的特征拼接起来即为文本的定长向量表示,对于文本分类问题,将其连接至softmax即构建出完整的模型。
在实际应用中,我们会使用多个卷积核来处理句子,窗口大小相同的卷积核堆叠起来形成一个矩阵,这样可以更高效的完成运算。
另外,我们也可使用窗口大小不同的卷积核来处理句子.
# 创建CNN网络 def CNN_net(data,dict_dim, class_dim=10, emb_dim=128, hid_dim=128,hid_dim2=98): emb = fluid.layers.embedding(input=data,#进模型之前需要得到一个emb词嵌入,得到一个矩阵的编码 size=[dict_dim, emb_dim]) conv_3 = fluid.nets.sequence_conv_pool( input=emb, num_filters=hid_dim, filter_size=3,#卷积核 act="tanh", pool_type="sqrt") conv_4 = fluid.nets.sequence_conv_pool( input=emb, num_filters=hid_dim2, filter_size=4, act="tanh", pool_type="sqrt") output = fluid.layers.fc( input=[conv_3, conv_4], size=class_dim, act='softmax')#经过全连接层,将两个cnn的结果拼接起来 return output#1x10的概率分布的矩阵,10个数,概率最大的数就是当前模型的预测结果 # 定义输入数据, lod_level不为0指定输入数据为序列数据 words = fluid.layers.data(name='words', shape=[1], dtype='int64', lod_level=1)#lod_level 处理变长序列,paddle官网的文档中LoDtensor lodlayer的索引 定长的数据不需要考虑这个问题 label = fluid.layers.data(name='label', shape=[1], dtype='int64') # 获取数据字典长度 dict_dim = get_dict_len('/home/aistudio/data/dict_txt.txt') # 获取卷积神经网络 # model = CNN_net(words, dict_dim, 15) # 获取分类器 model = CNN_net(words, dict_dim) # 获取损失函数和准确率 cost = fluid.layers.cross_entropy(input=model, label=label)#损失函数 avg_cost = fluid.layers.mean(cost)#每次训练都是一个batch,求一个平均 acc = fluid.layers.accuracy(input=model, label=label) # 获取预测程序 test_program = fluid.default_main_program().clone(for_test=True)#clone克隆函数 # 定义优化方法 optimizer = fluid.optimizer.AdagradOptimizer(learning_rate=0.002) opt = optimizer.minimize(avg_cost) # 创建一个执行器,CPU训练速度比较慢 #place = fluid.CPUPlace() place = fluid.CUDAPlace(0)#GPU执行 exe = fluid.Executor(place) # 进行参数初始化 exe.run(fluid.default_startup_program()) [] # 获取训练数据读取器和测试数据读取器 train_reader = paddle.batch(reader=train_reader('/home/aistudio/data/train_list.txt'), batch_size=128) test_reader = paddle.batch(reader=test_reader('/home/aistudio/data/test_list.txt'), batch_size=128) # 定义数据映射器 feeder = fluid.DataFeeder(place=place, feed_list=[words, label]) EPOCH_NUM=20#迭代次数 model_save_dir = '/home/aistudio/work/infer_model/' # 开始训练 for pass_id in range(EPOCH_NUM): # 进行训练 for batch_id, data in enumerate(train_reader()): train_cost, train_acc = exe.run(program=fluid.default_main_program(), feed=feeder.feed(data), fetch_list=[avg_cost, acc]) if batch_id % 100 == 0:#每执行100次,打印一次 print('Pass:%d, Batch:%d, Cost:%0.5f, Acc:%0.5f' % (pass_id, batch_id, train_cost[0], train_acc[0])) # 进行测试,读入一批陌生的数据,模型没有见过的数据, test_costs = [] test_accs = [] for batch_id, data in enumerate(test_reader()): test_cost, test_acc = exe.run(program=test_program, feed=feeder.feed(data), fetch_list=[avg_cost, acc]) test_costs.append(test_cost[0]) test_accs.append(test_acc[0]) # 计算平均预测损失在和准确率 test_cost = (sum(test_costs) / len(test_costs)) test_acc = (sum(test_accs) / len(test_accs)) print('Test:%d, Cost:%0.5f, ACC:%0.5f' % (pass_id, test_cost, test_acc)) # 保存预测模型,可以考虑将这段保存模型的代码放到for循环里面,将每一轮的模型都保存起来 if not os.path.exists(model_save_dir): os.makedirs(model_save_dir) fluid.io.save_inference_model(model_save_dir, feeded_var_names=[words.name], target_vars=[model], executor=exe) print('训练模型保存完成!') Pass:0, Batch:0, Cost:2.30681, Acc:0.09375 Pass:0, Batch:100, Cost:0.99743, Acc:0.68750 Pass:0, Batch:200, Cost:0.89360, Acc:0.76562 Pass:0, Batch:300, Cost:0.92248, Acc:0.70312 Test:0, Cost:0.81883, ACC:0.73921 Pass:1, Batch:0, Cost:0.90457, Acc:0.67969 Pass:1, Batch:100, Cost:0.67305, Acc:0.83594 Pass:1, Batch:200, Cost:0.63098, Acc:0.80469 Pass:1, Batch:300, Cost:0.76019, Acc:0.77344 Test:1, Cost:0.75819, ACC:0.75909 Pass:2, Batch:0, Cost:0.73232, Acc:0.76562 Pass:2, Batch:100, Cost:0.70476, Acc:0.77344 Pass:2, Batch:200, Cost:0.71542, Acc:0.75781 Pass:2, Batch:300, Cost:0.63258, Acc:0.78125 Test:2, Cost:0.73717, ACC:0.76160 Pass:3, Batch:0, Cost:0.56025, Acc:0.82812 Pass:3, Batch:100, Cost:0.48580, Acc:0.86719 Pass:3, Batch:200, Cost:0.54991, Acc:0.84375 Pass:3, Batch:300, Cost:0.67272, Acc:0.78906 Test:3, Cost:0.72726, ACC:0.76317 Pass:4, Batch:0, Cost:0.53660, Acc:0.82812 Pass:4, Batch:100, Cost:0.73550, Acc:0.78906 Pass:4, Batch:200, Cost:0.53774, Acc:0.80469 Pass:4, Batch:300, Cost:0.46155, Acc:0.85156 Test:4, Cost:0.72185, ACC:0.76169 Pass:5, Batch:0, Cost:0.65421, Acc:0.78906 Pass:5, Batch:100, Cost:0.59889, Acc:0.80469 Pass:5, Batch:200, Cost:0.71301, Acc:0.79688 Pass:5, Batch:300, Cost:0.69682, Acc:0.81250 Test:5, Cost:0.71626, ACC:0.76525 Pass:6, Batch:0, Cost:0.72434, Acc:0.75000 Pass:6, Batch:100, Cost:0.59109, Acc:0.77344 Pass:6, Batch:200, Cost:0.48783, Acc:0.81250 Pass:6, Batch:300, Cost:0.57463, Acc:0.81250 Test:6, Cost:0.71520, ACC:0.76447 Pass:7, Batch:0, Cost:0.50502, Acc:0.84375 Pass:7, Batch:100, Cost:0.62133, Acc:0.79688 Pass:7, Batch:200, Cost:0.68593, Acc:0.76562 Pass:7, Batch:300, Cost:0.55528, Acc:0.80469 Test:7, Cost:0.71300, ACC:0.76769 Pass:8, Batch:0, Cost:0.60046, Acc:0.76562 Pass:8, Batch:100, Cost:0.47617, Acc:0.82812 Pass:8, Batch:200, Cost:0.59591, Acc:0.79688 Pass:8, Batch:300, Cost:0.66050, Acc:0.76562 Test:8, Cost:0.71475, ACC:0.76594 Pass:9, Batch:0, Cost:0.40968, Acc:0.84375 Pass:9, Batch:100, Cost:0.50980, Acc:0.81250 Pass:9, Batch:200, Cost:0.55923, Acc:0.85156 Pass:9, Batch:300, Cost:0.42255, Acc:0.87500 Test:9, Cost:0.71282, ACC:0.76717 Pass:10, Batch:0, Cost:0.44147, Acc:0.88281 Pass:10, Batch:100, Cost:0.55140, Acc:0.85938 Pass:10, Batch:200, Cost:0.50935, Acc:0.84375 Pass:10, Batch:300, Cost:0.56366, Acc:0.83594 Test:10, Cost:0.71520, ACC:0.76586 Pass:11, Batch:0, Cost:0.55133, Acc:0.79688 Pass:11, Batch:100, Cost:0.45308, Acc:0.80469 Pass:11, Batch:200, Cost:0.63471, Acc:0.78125 Pass:11, Batch:300, Cost:0.52810, Acc:0.80469 Test:11, Cost:0.71511, ACC:0.76673 Pass:12, Batch:0, Cost:0.51947, Acc:0.83594 Pass:12, Batch:100, Cost:0.63086, Acc:0.80469 Pass:12, Batch:200, Cost:0.57166, Acc:0.82812 Pass:12, Batch:300, Cost:0.59658, Acc:0.75781 Test:12, Cost:0.71533, ACC:0.76673 Pass:13, Batch:0, Cost:0.34512, Acc:0.89062 Pass:13, Batch:100, Cost:0.47249, Acc:0.82812 Pass:13, Batch:200, Cost:0.51224, Acc:0.85156 Pass:13, Batch:300, Cost:0.45350, Acc:0.84375 Test:13, Cost:0.71736, ACC:0.76647 Pass:14, Batch:0, Cost:0.45494, Acc:0.85156 Pass:14, Batch:100, Cost:0.68085, Acc:0.78125 Pass:14, Batch:200, Cost:0.48124, Acc:0.83594 Pass:14, Batch:300, Cost:0.47296, Acc:0.85938 Test:14, Cost:0.71745, ACC:0.76760 Pass:15, Batch:0, Cost:0.73750, Acc:0.77344 Pass:15, Batch:100, Cost:0.55038, Acc:0.83594 Pass:15, Batch:200, Cost:0.59775, Acc:0.74219 Pass:15, Batch:300, Cost:0.47932, Acc:0.82812 Test:15, Cost:0.72163, ACC:0.76673 Pass:16, Batch:0, Cost:0.31890, Acc:0.90625 Pass:16, Batch:100, Cost:0.38017, Acc:0.85156 Pass:16, Batch:200, Cost:0.57517, Acc:0.79688 Pass:16, Batch:300, Cost:0.44878, Acc:0.87500 Test:16, Cost:0.72158, ACC:0.76786 Pass:17, Batch:0, Cost:0.43048, Acc:0.88281 Pass:17, Batch:100, Cost:0.47145, Acc:0.82031 Pass:17, Batch:200, Cost:0.47934, Acc:0.82812 Pass:17, Batch:300, Cost:0.36709, Acc:0.89062 Test:17, Cost:0.72381, ACC:0.76647 Pass:18, Batch:0, Cost:0.35568, Acc:0.88281 Pass:18, Batch:100, Cost:0.61057, Acc:0.82031 Pass:18, Batch:200, Cost:0.40052, Acc:0.88281 Pass:18, Batch:300, Cost:0.45469, Acc:0.83594 Test:18, Cost:0.72549, ACC:0.76743 Pass:19, Batch:0, Cost:0.41658, Acc:0.86719 Pass:19, Batch:100, Cost:0.48703, Acc:0.86719 Pass:19, Batch:200, Cost:0.47010, Acc:0.83594 Pass:19, Batch:300, Cost:0.35333, Acc:0.84375 Test:19, Cost:0.72887, ACC:0.76690 训练模型保存完成! # 用训练好的模型进行预测并输出预测结果 # 创建执行器 #place = fluid.CPUPlace() place = fluid.CUDAPlace(0) exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) save_path = '/home/aistudio/work/infer_model/' # 从模型中获取预测程序、输入数据名称列表、分类器 [infer_program, feeded_var_names, target_var] = fluid.io.load_inference_model(dirname=save_path, executor=exe) # 获取数据 def get_data(sentence): # 读取数据字典 with open('/home/aistudio/data/dict_txt.txt', 'r', encoding='utf-8') as f_data: dict_txt = eval(f_data.readlines()[0]) dict_txt = dict(dict_txt) # 把字符串数据转换成列表数据 keys = dict_txt.keys() data = [] for s in sentence: # 判断是否存在未知字符 if not s in keys: s = '<unk>' data.append(int(dict_txt[s])) return data data = [] # 获取图片数据 data1 = get_data('在获得诺贝尔文学奖7年之后,莫言15日晚间在山西汾阳贾家庄如是说') data2 = get_data('综合“今日美国”、《世界日报》等当地媒体报道,芝加哥河滨警察局表示,') data.append(data1) data.append(data2) # 获取每句话的单词数量 base_shape = [[len(c) for c in data]] # 生成预测数据 tensor_words = fluid.create_lod_tensor(data, base_shape, place) # 执行预测 result = exe.run(program=infer_program, feed={feeded_var_names[0]: tensor_words}, fetch_list=target_var) # 分类名称 names = [ '文化', '娱乐', '体育', '财经','房产', '汽车', '教育', '科技', '国际', '证券'] # 获取结果概率最大的label for i in range(len(data)): lab = np.argsort(result)[0][i][-1]#10个概率值,对其进行排序,选择最大的那个概率,(-1) print('预测结果标签为:%d, 名称为:%s, 概率为:%f' % (lab, names[lab], result[0][i][lab])) 预测结果标签为:0, 名称为:文化, 概率为:0.949490 预测结果标签为:8, 名称为:国际, 概率为:0.472569