Taylor公式的应用
机器学习中广泛应用,数学建模,线性回归,预测等领域
关于Taylor公式
Taylor公式是用一个函数在某点的信息描述其附近取值的公式,如果函数足够平滑,在已知函数在某一点的各阶导数值的情况下Taylor公式可以利用这些导数值来做系数构建一个多项式近似函数在这一点的邻域中的值若函数f(x)在包含
x
0
x_0
x0的某个闭区间[a,b]上具有n阶函数, 且在开区间(a,b)上具有n+1阶函数,则对闭区间[a,b]上任意一点x, 有Taylor公式如下注:
f
(
n
)
(
x
)
f^{(n)}(x)
f(n)(x)表示f(x)的n阶导数;
R
n
(
x
)
R_n(x)
Rn(x)是Taylor公式的余项, 是
(
x
−
x
0
)
n
(x-x_0)^n
(x−x0)n的高阶无穷小
f
(
x
)
=
f
(
x
0
)
0
!
+
f
′
(
x
0
)
1
!
(
x
−
x
0
)
+
f
′
′
(
x
0
)
2
!
(
x
−
x
0
)
2
+
.
.
.
+
f
(
n
)
(
x
0
)
n
!
(
x
−
x
0
)
n
+
R
n
(
x
)
f(x) = \frac{f(x_0)}{0!} + \frac{f'(x_0)}{1!}(x-x_0) + \frac{f''(x_0)}{2!}(x-x_0)^2 + ... + \frac{f^{(n)(x_0)}}{n!}(x-x_0)^n + R_n(x)
f(x)=0!f(x0)+1!f′(x0)(x−x0)+2!f′′(x0)(x−x0)2+...+n!f(n)(x0)(x−x0)n+Rn(x)
麦克劳林公式
在泰勒公式中,当
x
0
=
0
x_0 = 0
x0=0时,就变成了麦克劳林公式注:
0
!
=
1
,
1
!
=
1
,
n
!
=
n
∗
(
n
−
1
)
!
0! = 1, 1! = 1, n! = n*(n-1)!
0!=1,1!=1,n!=n∗(n−1)!
f
(
x
)
=
f
(
0
)
0
!
+
f
′
(
0
)
1
!
+
f
′
′
(
0
)
2
!
x
2
+
.
.
.
+
f
(
n
)
(
0
)
n
!
x
n
+
R
n
(
x
)
f(x) = \frac{f(0)}{0!} + \frac{f'(0)}{1!} + \frac{f''(0)}{2!}x^2 + ... + \frac{f^{(n)}(0)}{n!}x^n + R_n(x)
f(x)=0!f(0)+1!f′(0)+2!f′′(0)x2+...+n!f(n)(0)xn+Rn(x)
关于Taylor公式的余项
Taylor公式:
f
(
x
)
=
∑
k
=
0
n
f
(
k
)
(
x
0
)
k
!
(
x
−
x
0
)
k
+
R
n
(
x
)
f(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x-x_0)^k + R_n(x)
f(x)=∑k=0nk!f(k)(x0)(x−x0)k+Rn(x)关于余项
R
n
(
x
)
R_n(x)
Rn(x)
余项用于平衡误差佩亚诺(Peano)余项:
R
n
(
x
)
=
o
[
(
x
−
x
0
)
n
]
R_n(x) = o[(x-x_0)^n]
Rn(x)=o[(x−x0)n]
这里的’o’比较难以理解,它表示比
(
x
−
x
0
)
n
(x-x_0)^n
(x−x0)n趋向于0的速度还快同理
o
[
x
2
]
o[x^2]
o[x2]表示比
x
2
→
0
x^2 \to 0
x2→0的速度还快
o
[
(
x
−
x
0
)
n
]
o[(x-x_0)^n]
o[(x−x0)n]表示
(
x
−
x
0
)
n
(x-x_0)^n
(x−x0)n高阶无穷小
lim
x
→
x
0
o
[
(
x
−
x
0
)
n
]
(
x
−
x
0
)
n
=
lim
x
→
x
0
R
n
(
x
)
(
x
−
x
0
)
n
=
0
\lim_{x \to x_0} \frac{o[(x-x_0)^n]}{(x-x_0)^n} = \lim_{x \to x_0} \frac{R_n(x)}{(x-x_0)^n} = 0
limx→x0(x−x0)no[(x−x0)n]=limx→x0(x−x0)nRn(x)=0 分子比分母更快的趋向于0,结果为0举例:
o
[
(
x
−
x
0
)
n
]
o[(x-x_0)^n]
o[(x−x0)n] 可以表示成:
(
x
−
x
0
)
n
+
1
、
(
x
−
x
0
)
n
+
2
、
.
.
.
.
(x-x_0)^{n+1}、(x-x_0)^{n+2}、....
(x−x0)n+1、(x−x0)n+2、.... 只要比
(
x
−
x
0
)
n
(x-x_0)^n
(x−x0)n快就行,就是这个概念比如设
R
n
(
x
)
=
o
[
(
x
−
x
0
)
n
]
=
(
x
−
x
0
)
n
+
1
R_n(x) = o[(x-x_0)^n] = (x-x_0)^{n+1}
Rn(x)=o[(x−x0)n]=(x−x0)n+1, 则
lim
x
→
x
0
o
[
(
x
−
x
0
)
n
]
(
x
−
x
0
)
n
=
lim
x
→
x
0
(
x
−
x
0
)
n
+
1
(
x
−
x
0
)
n
=
lim
x
→
x
0
x
−
x
0
=
0
\lim_{x \to x_0} \frac{o[(x-x_0)^n]}{(x-x_0)^n} = \lim_{x \to x_0} \frac{(x-x_0)^{n+1}}{(x-x_0)^n} = \lim_{x \to x_0} x-x_0 = 0
limx→x0(x−x0)no[(x−x0)n]=limx→x0(x−x0)n(x−x0)n+1=limx→x0x−x0=0我们称为这样的泰勒展开式为"含有佩亚诺(Peano)余项的n阶泰勒展开式" 拉格朗日(Lagrange)余项:
R
n
(
x
)
=
f
(
n
+
1
)
[
x
0
+
θ
(
x
−
x
0
)
]
(
x
−
x
0
)
n
+
1
(
n
+
1
)
!
R_n(x) = f^{(n+1)}[x_0 + \theta(x - x_0)] \frac{(x-x_0)^{n+1}}{(n+1)!}
Rn(x)=f(n+1)[x0+θ(x−x0)](n+1)!(x−x0)n+1
其中
x
0
+
θ
(
x
−
x
0
)
=
φ
x_0 + \theta(x - x_0) = \varphi
x0+θ(x−x0)=φ ,
0
<
θ
<
1
0 < \theta < 1
0<θ<1,
x
0
<
φ
<
x
x_0 < \varphi < x
x0<φ<x可简写为:
R
n
(
x
)
=
f
(
n
+
1
)
(
φ
)
(
x
−
x
0
)
n
+
1
(
n
+
1
)
!
R_n(x) = f^{(n+1)} (\varphi) \frac{(x-x_0)^{n+1}}{(n+1)!}
Rn(x)=f(n+1)(φ)(n+1)!(x−x0)n+1我们称为这样的泰勒展开式为"含有拉格朗日(Lagrange)余项的n阶泰勒展开式" 这是两位数学家提出的余项
几个常见的初等函数的带有佩亚诺余项的麦克劳林公式
e
x
=
1
+
x
+
1
2
!
x
2
+
.
.
.
+
1
n
!
x
n
+
o
(
x
n
)
e^x = 1 + x + \frac{1}{2!}x^2 + ... + \frac{1}{n!}x^n + o(x^n)
ex=1+x+2!1x2+...+n!1xn+o(xn)
这里
e
x
e^x
ex的n阶导数都是它本身, 无惧降维打击其次,
e
x
=
∑
n
=
0
∞
x
n
n
!
x
∈
R
e^x = \sum_{n=0}^\infty \frac{x^n}{n!} \ \ x \in R
ex=∑n=0∞n!xn x∈R进行泰勒展开就有上式
s
i
n
x
=
x
−
1
3
!
x
3
+
.
.
.
+
(
−
1
)
m
−
1
(
2
m
−
1
)
!
x
2
m
−
1
+
o
(
x
2
m
−
1
)
sin x = x - \frac{1}{3!}x^3 + ... + \frac{(-1)^{m-1}}{(2m - 1)!} x^{2m -1} + o(x^{2m -1})
sinx=x−3!1x3+...+(2m−1)!(−1)m−1x2m−1+o(x2m−1)
f
(
x
)
=
s
i
n
x
,
x
0
=
0
f(x) = sin x, x_0 = 0
f(x)=sinx,x0=0
s
i
n
′
x
=
c
o
s
x
、
s
i
n
′
′
x
=
−
s
i
n
x
、
s
i
n
′
′
′
x
=
−
c
o
s
x
、
s
i
n
(
4
)
x
=
s
i
n
x
、
s
i
n
(
5
)
x
=
c
o
s
x
、
s
i
n
(
6
)
x
=
−
s
i
n
x
、
.
.
.
sin'x=cosx、sin''x=-sinx、sin'''x=-cosx、sin^{(4)}x = sinx、sin^{(5)}x = cosx、sin^{(6)}x = -sin x、...
sin′x=cosx、sin′′x=−sinx、sin′′′x=−cosx、sin(4)x=sinx、sin(5)x=cosx、sin(6)x=−sinx、...
s
i
n
x
=
0
+
1
1
!
x
+
0
2
!
+
−
1
3
!
x
3
+
0
4
!
+
1
5
!
x
5
+
0
6
!
+
−
1
7
!
x
7
+
.
.
.
sinx=0+\frac{1}{1!}x + \frac{0}{2!} + \frac{-1}{3!}x^3 + \frac{0}{4!} + \frac{1}{5!}x^5 + \frac{0}{6!} + \frac{-1}{7!}x^7 + ...
sinx=0+1!1x+2!0+3!−1x3+4!0+5!1x5+6!0+7!−1x7+...由此推出上式
c
o
s
x
=
1
−
1
2
!
x
2
+
1
4
!
x
4
−
.
.
.
+
(
−
1
)
m
(
2
m
)
!
x
2
m
+
o
(
x
2
m
)
cos x = 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 - ... + \frac{(-1)^m}{(2m)!}x^{2m} + o(x^{2m})
cosx=1−2!1x2+4!1x4−...+(2m)!(−1)mx2m+o(x2m)
同理
s
i
n
x
sin x
sinx
l
n
(
1
+
x
)
=
x
−
1
2
x
2
+
1
3
x
3
−
.
.
.
+
(
−
1
)
n
−
1
n
x
n
+
o
(
x
n
)
ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - ... + \frac{(-1)^{n-1}}{n} x^n + o(x^n)
ln(1+x)=x−21x2+31x3−...+n(−1)n−1xn+o(xn)
这里是复合函数求导
f
(
x
)
=
l
n
(
1
+
x
)
f(x) = ln(1+x)
f(x)=ln(1+x)
f
′
(
x
)
=
1
1
+
x
,
f
′
′
(
x
)
,
f
′
′
′
(
x
)
,
.
.
.
.
f'(x) = \frac{1}{1+x}, f''(x), f'''(x), ....
f′(x)=1+x1,f′′(x),f′′′(x),....同理推出上式
1
1
−
X
=
1
+
x
+
x
2
+
.
.
.
+
x
n
+
o
(
x
n
)
\frac{1}{1 - X} = 1 + x + x^2 + ... + x^n + o(x^n)
1−X1=1+x+x2+...+xn+o(xn)
(
1
+
x
)
m
=
1
+
m
x
+
m
(
m
−
1
)
2
!
x
2
+
.
.
.
+
m
(
m
−
1
)
.
.
.
(
m
−
n
+
1
)
n
!
x
n
+
o
(
x
n
)
(1+x)^m = 1 + mx + \frac{m(m-1)}{2!}x^2 + ... + \frac{m(m-1)...(m-n+1)}{n!}x^n + o(x^n)
(1+x)m=1+mx+2!m(m−1)x2+...+n!m(m−1)...(m−n+1)xn+o(xn)
泰勒公式的应用
求自然常数e的具体值,将
e
x
e^x
ex进行泰勒展开, 令
x
=
1
x=1
x=1即可欧拉公式(第一宇宙公式)的证明
e
i
x
=
c
o
s
x
+
i
s
i
n
x
e^{ix} = cos x + isinx
eix=cosx+isinx, 其中
i
2
=
−
1
i^2 = -1
i2=−1,
i
i
i为虚数单位当
x
=
π
x=\pi
x=π时,
e
i
π
+
1
=
0
e^{i \pi} + 1 = 0
eiπ+1=0 下文会有更多相关应用说明