隔板法,分割成k块的时候,即是n-1个间隙里放入k-1个隔板。C(k-1,n-1),累加,利用二项式定理即是求2n-1。 但是由于n太大,需要用费马小定理降幂。因为2和p互质,那么2p-1和1对p同余,那我们看2n-1能分出多少个2p1,这部分利用同余定理就都变成乘1,只需要求出2(n-1)%(mod-1)即可,指数在1e9+8以内,这个时候利用快速幂就可以快速求出来了
AC代码:
#include<iostream> #include<string> #include<algorithm> #include<cstdio> #include<cstring> #include<cmath> #include<map> #include <queue> #include<sstream> #include <stack> #include <set> #include <bitset> #include<vector> #define FAST ios::sync_with_stdio(false) #define abs(a) ((a)>=0?(a):-(a)) #define sz(x) ((int)(x).size()) #define all(x) (x).begin(),(x).end() #define mem(a,b) memset(a,b,sizeof(a)) #define max(a,b) ((a)>(b)?(a):(b)) #define min(a,b) ((a)<(b)?(a):(b)) #define rep(i,a,n) for(int i=a;i<=n;++i) #define per(i,n,a) for(int i=n;i>=a;--i) #define pb push_back #define mp make_pair #define fi first #define se second using namespace std; typedef long long ll; typedef pair<ll,ll> PII; const int maxn = 1e5+200; const int inf=0x3f3f3f3f; const double eps = 1e-7; const double pi=acos(-1.0); const int mod = 1e9+7; inline int lowbit(int x){return x&(-x);} ll gcd(ll a,ll b){return b?gcd(b,a%b):a;} void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y){if(!b){d=a,x=1,y=0;}else{ex_gcd(b,a%b,d,y,x);y-=x*(a/b);}}//x=(x%(b/d)+(b/d))%(b/d); inline ll qpow(ll a,ll b,ll MOD=mod){ll res=1;a%=MOD;while(b>0){if(b&1)res=res*a%MOD;a=a*a%MOD;b>>=1;}return res;} inline ll inv(ll x,ll p){return qpow(x,p-2,p);} inline ll Jos(ll n,ll k,ll s=1){ll res=0;rep(i,1,n+1) res=(res+k)%i;return (res+s)%n;} inline ll read(){ ll f = 1; ll x = 0;char ch = getchar();while(ch>'9'|ch<'0') {if(ch=='-') f=-1; ch = getchar();}while(ch>='0'&&ch<='9') x = (x<<3) + (x<<1) + ch - '0', ch = getchar();return x*f; } int dir[4][2] = { {1,0}, {-1,0},{0,1},{0,-1} }; int main() { string s; while(cin>>s) { ll len = s.size(); ll sum = 0; for(int i=0;i<s.size();i++) { sum = sum*10 + s[i] - 48; sum %= mod - 1; } sum -= 1; ll ans = qpow(2,sum,mod); cout<<ans<<'\n'; } return 0; }