多线程高并发

    技术2025-03-24  26

    CAS

    Compare And Swap (Compare And Exchange) / 自旋 / 自旋锁 / 无锁

    因为经常配合循环操作,直到完成为止,所以泛指一类操作

    cas(v, a, b) ,变量v,期待值a, 修改值b

    ABA问题,你的女朋友在离开你的这段儿时间经历了别的人,自旋就是你空转等待,一直等到她接纳你为止

    解决办法(版本号 AtomicStampedReference),基础类型简单值不需要版本号

    Unsafe

    AtomicInteger:

    public final int incrementAndGet() { for (;;) { int current = get(); int next = current + 1; if (compareAndSet(current, next)) return next; } } public final boolean compareAndSet(int expect, int update) { return unsafe.compareAndSwapInt(this, valueOffset, expect, update); }

    Unsafe:

    public final native boolean compareAndSwapInt(Object var1, long var2, int var4, int var5);

    运用:

    package com.mashibing.jol; import sun.misc.Unsafe; import java.lang.reflect.Field; public class T02_TestUnsafe { int i = 0; private static T02_TestUnsafe t = new T02_TestUnsafe(); public static void main(String[] args) throws Exception { //Unsafe unsafe = Unsafe.getUnsafe(); Field unsafeField = Unsafe.class.getDeclaredFields()[0]; unsafeField.setAccessible(true); Unsafe unsafe = (Unsafe) unsafeField.get(null); Field f = T02_TestUnsafe.class.getDeclaredField("i"); long offset = unsafe.objectFieldOffset(f); System.out.println(offset); boolean success = unsafe.compareAndSwapInt(t, offset, 0, 1); System.out.println(success); System.out.println(t.i); //unsafe.compareAndSwapInt() } }

    jdk8u: unsafe.cpp:

    cmpxchg = compare and exchange

    UNSAFE_ENTRY(jboolean, Unsafe_CompareAndSwapInt(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jint e, jint x)) UnsafeWrapper("Unsafe_CompareAndSwapInt"); oop p = JNIHandles::resolve(obj); jint* addr = (jint *) index_oop_from_field_offset_long(p, offset); return (jint)(Atomic::cmpxchg(x, addr, e)) == e; UNSAFE_END

    jdk8u: atomic_linux_x86.inline.hpp

    is_MP = Multi Processor

    inline jint Atomic::cmpxchg (jint exchange_value, volatile jint* dest, jint compare_value) { int mp = os::is_MP(); __asm__ volatile (LOCK_IF_MP(%4) "cmpxchgl %1,(%3)" : "=a" (exchange_value) : "r" (exchange_value), "a" (compare_value), "r" (dest), "r" (mp) : "cc", "memory"); return exchange_value; }

    jdk8u: os.hpp is_MP()

    static inline bool is_MP() { // During bootstrap if _processor_count is not yet initialized // we claim to be MP as that is safest. If any platform has a // stub generator that might be triggered in this phase and for // which being declared MP when in fact not, is a problem - then // the bootstrap routine for the stub generator needs to check // the processor count directly and leave the bootstrap routine // in place until called after initialization has ocurred. return (_processor_count != 1) || AssumeMP; }

    jdk8u: atomic_linux_x86.inline.hpp

    #define LOCK_IF_MP(mp) "cmp $0, " #mp "; je 1f; lock; 1: "

    最终实现:

    cmpxchg = cas修改变量值

    lock cmpxchg 指令

    硬件:

    lock指令在执行后面指令的时候锁定一个北桥信号

    (不采用锁总线的方式)

    markword

    工具:JOL = Java Object Layout

    <dependencies> <!-- https://mvnrepository.com/artifact/org.openjdk.jol/jol-core --> <dependency> <groupId>org.openjdk.jol</groupId> <artifactId>jol-core</artifactId> <version>0.9</version> </dependency> </dependencies>

    jdk8u: markOop.hpp

    // Bit-format of an object header (most significant first, big endian layout below): // // 32 bits: // -------- // hash:25 ------------>| age:4 biased_lock:1 lock:2 (normal object) // JavaThread*:23 epoch:2 age:4 biased_lock:1 lock:2 (biased object) // size:32 ------------------------------------------>| (CMS free block) // PromotedObject*:29 ---------->| promo_bits:3 ----->| (CMS promoted object) // // 64 bits: // -------- // unused:25 hash:31 -->| unused:1 age:4 biased_lock:1 lock:2 (normal object) // JavaThread*:54 epoch:2 unused:1 age:4 biased_lock:1 lock:2 (biased object) // PromotedObject*:61 --------------------->| promo_bits:3 ----->| (CMS promoted object) // size:64 ----------------------------------------------------->| (CMS free block) // // unused:25 hash:31 -->| cms_free:1 age:4 biased_lock:1 lock:2 (COOPs && normal object) // JavaThread*:54 epoch:2 cms_free:1 age:4 biased_lock:1 lock:2 (COOPs && biased object) // narrowOop:32 unused:24 cms_free:1 unused:4 promo_bits:3 ----->| (COOPs && CMS promoted object) // unused:21 size:35 -->| cms_free:1 unused:7 ------------------>| (COOPs && CMS free block)

    synchronized的横切面详解

    synchronized原理升级过程汇编实现vs reentrantLock的区别

    java源码层级

    synchronized(o)

    字节码层级

    monitorenter moniterexit

    JVM层级(Hotspot)

    package com.mashibing.insidesync; import org.openjdk.jol.info.ClassLayout; public class T01_Sync1 { public static void main(String[] args) { Object o = new Object(); System.out.println(ClassLayout.parseInstance(o).toPrintable()); } } com.mashibing.insidesync.T01_Sync1$Lock object internals: OFFSET SIZE TYPE DESCRIPTION VALUE 0 4 (object header) 05 00 00 00 (00000101 00000000 00000000 00000000) (5) 4 4 (object header) 00 00 00 00 (00000000 00000000 00000000 00000000) (0) 8 4 (object header) 49 ce 00 20 (01001001 11001110 00000000 00100000) (536923721) 12 4 (loss due to the next object alignment) Instance size: 16 bytes Space losses: 0 bytes internal + 4 bytes external = 4 bytes total com.mashibing.insidesync.T02_Sync2$Lock object internals: OFFSET SIZE TYPE DESCRIPTION VALUE 0 4 (object header) 05 90 2e 1e (00000101 10010000 00101110 00011110) (506368005) 4 4 (object header) 1b 02 00 00 (00011011 00000010 00000000 00000000) (539) 8 4 (object header) 49 ce 00 20 (01001001 11001110 00000000 00100000) (536923721) 12 4 (loss due to the next object alignment) Instance size: 16 bytes Space losses: 0 bytes internal + 4 bytes external = 4 bytes tota

    InterpreterRuntime:: monitorenter方法

    IRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorenter(JavaThread* thread, BasicObjectLock* elem)) #ifdef ASSERT thread->last_frame().interpreter_frame_verify_monitor(elem); #endif if (PrintBiasedLockingStatistics) { Atomic::inc(BiasedLocking::slow_path_entry_count_addr()); } Handle h_obj(thread, elem->obj()); assert(Universe::heap()->is_in_reserved_or_null(h_obj()), "must be NULL or an object"); if (UseBiasedLocking) { // Retry fast entry if bias is revoked to avoid unnecessary inflation ObjectSynchronizer::fast_enter(h_obj, elem->lock(), true, CHECK); } else { ObjectSynchronizer::slow_enter(h_obj, elem->lock(), CHECK); } assert(Universe::heap()->is_in_reserved_or_null(elem->obj()), "must be NULL or an object"); #ifdef ASSERT thread->last_frame().interpreter_frame_verify_monitor(elem); #endif IRT_END

    synchronizer.cpp

    revoke_and_rebias

    void ObjectSynchronizer::fast_enter(Handle obj, BasicLock* lock, bool attempt_rebias, TRAPS) { if (UseBiasedLocking) { if (!SafepointSynchronize::is_at_safepoint()) { BiasedLocking::Condition cond = BiasedLocking::revoke_and_rebias(obj, attempt_rebias, THREAD); if (cond == BiasedLocking::BIAS_REVOKED_AND_REBIASED) { return; } } else { assert(!attempt_rebias, "can not rebias toward VM thread"); BiasedLocking::revoke_at_safepoint(obj); } assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now"); } slow_enter (obj, lock, THREAD) ; } void ObjectSynchronizer::slow_enter(Handle obj, BasicLock* lock, TRAPS) { markOop mark = obj->mark(); assert(!mark->has_bias_pattern(), "should not see bias pattern here"); if (mark->is_neutral()) { // Anticipate successful CAS -- the ST of the displaced mark must // be visible <= the ST performed by the CAS. lock->set_displaced_header(mark); if (mark == (markOop) Atomic::cmpxchg_ptr(lock, obj()->mark_addr(), mark)) { TEVENT (slow_enter: release stacklock) ; return ; } // Fall through to inflate() ... } else if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) { assert(lock != mark->locker(), "must not re-lock the same lock"); assert(lock != (BasicLock*)obj->mark(), "don't relock with same BasicLock"); lock->set_displaced_header(NULL); return; } #if 0 // The following optimization isn't particularly useful. if (mark->has_monitor() && mark->monitor()->is_entered(THREAD)) { lock->set_displaced_header (NULL) ; return ; } #endif // The object header will never be displaced to this lock, // so it does not matter what the value is, except that it // must be non-zero to avoid looking like a re-entrant lock, // and must not look locked either. lock->set_displaced_header(markOopDesc::unused_mark()); ObjectSynchronizer::inflate(THREAD, obj())->enter(THREAD); }

    inflate方法:膨胀为重量级锁

    锁升级过程

    JDK8 markword实现表:

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-V7JzLU0r-1593831100737)(./markword.png)]

    无锁 - 偏向锁 - 轻量级锁 (自旋锁,自适应自旋)- 重量级锁

    synchronized优化的过程和markword息息相关

    用markword中最低的三位代表锁状态 其中1位是偏向锁位 两位是普通锁位

    Object o = new Object() 锁 = 0 01 无锁态

    o.hashCode() 001 + hashcode

    00000001 10101101 00110100 00110110 01011001 00000000 00000000 00000000

    little endian big endian

    00000000 00000000 00000000 01011001 00110110 00110100 10101101 00000000

    默认synchronized(o) 00 -> 轻量级锁 默认情况 偏向锁有个时延,默认是4秒 why? 因为JVM虚拟机自己有一些默认启动的线程,里面有好多sync代码,这些sync代码启动时就知道肯定会有竞争,如果使用偏向锁,就会造成偏向锁不断的进行锁撤销和锁升级的操作,效率较低。

    -XX:BiasedLockingStartupDelay=0

    如果设定上述参数 new Object () - > 101 偏向锁 ->线程ID为0 -> Anonymous BiasedLock 打开偏向锁,new出来的对象,默认就是一个可偏向匿名对象101

    如果有线程上锁 上偏向锁,指的就是,把markword的线程ID改为自己线程ID的过程 偏向锁不可重偏向 批量偏向 批量撤销

    如果有线程竞争 撤销偏向锁,升级轻量级锁 线程在自己的线程栈生成LockRecord ,用CAS操作将markword设置为指向自己这个线程的LR的指针,设置成功者得到锁

    如果竞争加剧 竞争加剧:有线程超过10次自旋, -XX:PreBlockSpin, 或者自旋线程数超过CPU核数的一半, 1.6之后,加入自适应自旋 Adapative Self Spinning , JVM自己控制 升级重量级锁:-> 向操作系统申请资源,linux mutex , CPU从3级-0级系统调用,线程挂起,进入等待队列,等待操作系统的调度,然后再映射回用户空间

    (以上实验环境是JDK11,打开就是偏向锁,而JDK8默认对象头是无锁)

    偏向锁默认是打开的,但是有一个时延,如果要观察到偏向锁,应该设定参数

    没错,我就是厕所所长

    加锁,指的是锁定对象

    锁升级的过程

    JDK较早的版本 OS的资源 互斥量 用户态 -> 内核态的转换 重量级 效率比较低

    现代版本进行了优化

    无锁 - 偏向锁 -轻量级锁(自旋锁)-重量级锁

    偏向锁 - markword 上记录当前线程指针,下次同一个线程加锁的时候,不需要争用,只需要判断线程指针是否同一个,所以,偏向锁,偏向加锁的第一个线程 。hashCode备份在线程栈上 线程销毁,锁降级为无锁

    有争用 - 锁升级为轻量级锁 - 每个线程有自己的LockRecord在自己的线程栈上,用CAS去争用markword的LR的指针,指针指向哪个线程的LR,哪个线程就拥有锁

    自旋超过10次,升级为重量级锁 - 如果太多线程自旋 CPU消耗过大,不如升级为重量级锁,进入等待队列(不消耗CPU)-XX:PreBlockSpin

    自旋锁在 JDK1.4.2 中引入,使用 -XX:+UseSpinning 来开启。JDK 6 中变为默认开启,并且引入了自适应的自旋锁(适应性自旋锁)。

    自适应自旋锁意味着自旋的时间(次数)不再固定,而是由前一次在同一个锁上的自旋时间及锁的拥有者的状态来决定。如果在同一个锁对象上,自旋等待刚刚成功获得过锁,并且持有锁的线程正在运行中,那么虚拟机就会认为这次自旋也是很有可能再次成功,进而它将允许自旋等待持续相对更长的时间。如果对于某个锁,自旋很少成功获得过,那在以后尝试获取这个锁时将可能省略掉自旋过程,直接阻塞线程,避免浪费处理器资源。

    偏向锁由于有锁撤销的过程revoke,会消耗系统资源,所以,在锁争用特别激烈的时候,用偏向锁未必效率高。还不如直接使用轻量级锁。

    synchronized最底层实现

    public class T { static volatile int i = 0; public static void n() { i++; } public static synchronized void m() {} publics static void main(String[] args) { for(int j=0; j<1000_000; j++) { m(); n(); } } }

    java -XX:+UnlockDiagonositicVMOptions -XX:+PrintAssembly T

    C1 Compile Level 1 (一级优化)

    C2 Compile Level 2 (二级优化)

    找到m() n()方法的汇编码,会看到 lock comxchg …指令

    synchronized vs Lock (CAS)

    在高争用 高耗时的环境下synchronized效率更高 在低争用 低耗时的环境下CAS效率更高 synchronized到重量级之后是等待队列(不消耗CPU) CAS(等待期间消耗CPU) 一切以实测为准

    锁消除 lock eliminate

    public void add(String str1,String str2){ StringBuffer sb = new StringBuffer(); sb.append(str1).append(str2); }

    我们都知道 StringBuffer 是线程安全的,因为它的关键方法都是被 synchronized 修饰过的,但我们看上面这段代码,我们会发现,sb 这个引用只会在 add 方法中使用,不可能被其它线程引用(因为是局部变量,栈私有),因此 sb 是不可能共享的资源,JVM 会自动消除 StringBuffer 对象内部的锁。

    锁粗化 lock coarsening

    public String test(String str){ int i = 0; StringBuffer sb = new StringBuffer(): while(i < 100){ sb.append(str); i++; } return sb.toString(): }

    JVM 会检测到这样一连串的操作都对同一个对象加锁(while 循环内 100 次执行 append,没有锁粗化的就要进行 100 次加锁/解锁),此时 JVM 就会将加锁的范围粗化到这一连串的操作的外部(比如 while 虚幻体外),使得这一连串操作只需要加一次锁即可。

    锁降级(不重要)

    https://www.zhihu.com/question/63859501

    其实,只被VMThread访问,降级也就没啥意义了。所以可以简单认为锁降级不存在!

    超线程

    一个ALU + 两组Registers + PC

    参考资料

    http://openjdk.java.net/groups/hotspot/docs/HotSpotGlossary.html

    Processed: 0.008, SQL: 9