a k = 2 N ∑ i = 0 N − 1 x i c o s 2 k i π N a_{k}=\frac{2}{N}\sum_{i=0}^{N-1}{x_{i}cos\frac{2ki\pi}{N}} ak=N2i=0∑N−1xicosN2kiπ
ak=0 N=8000 k=1000 for i in np.arange(0,8000-1): ak+=sig[i]*np.cos(2*np.pi*k*i/N) print(ak/N) 784.6553321430675c k = 1 N ∑ i = 0 N − 1 x i e − j 2 k i π N c_{k}=\frac{1}{N}\sum_{i=0}^{N-1}{x_{i}e^{-j\frac{2ki\pi}{N}}} ck=N1i=0∑N−1xie−jN2kiπ
ak=0 N=8000 k=1000 for i in np.arange(0,8000-1): ak+=sig[i]*np.exp(2*np.pi*k*i*(-1.j)/N) print(ak/N) (784.6553321424174-9957.788439085387j) y=sig[0:8000] YY = np.fft.fft(y) # 未归一化 Y = np.fft.fft(y)/len(y) # fft computing and normalization 归一化 Y1 = Y[range(int(len(y)/2))] print(Y[999:1001]) [ 18.92979144 -242.80867967j 783.61624233-9958.8275289j ] plt.plot(Y1) /Users/chenpeiwen/opt/anaconda3/lib/python3.7/site-packages/numpy/core/_asarray.py:85: ComplexWarning: Casting complex values to real discards the imaginary part return array(a, dtype, copy=False, order=order) [<matplotlib.lines.Line2D at 0x11bd3d050>] import librosa import librosa.display y, sr = librosa.load('sin.wav') S = np.abs(librosa.stft(y)) plt.figure() librosa.display.specshow(S**2, sr=sr, y_axis='log') # 从波形获取功率谱图 plt.colorbar() plt.title('Power spectrogram') Text(0.5, 1.0, 'Power spectrogram') mfccs = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=40) print(mfccs.shape) # (40, 65) (40, 216)