证明见《剑指offer 第二版》P229-P230
书中有一步 A 1 A 2 ⋯ A y − 1 A y ⋯ A n < A 1 A 2 ⋯ A y A y − 1 ⋯ A n A_{1}A_{2}\cdots A_{y-1}A_{y} \cdots A_{n} < A_{1}A_{2}\cdots A_{y}A_{y-1} \cdots A_{n} A1A2⋯Ay−1Ay⋯An<A1A2⋯AyAy−1⋯An 让读者自己证明,下给出证明
因为 A y − 1 A y < A y A y − 1 A_{y-1}A_{y} < A_{y}A_{y-1} Ay−1Ay<AyAy−1 且两个字符串中 A 1 A 2 ⋯ A y − 2 X X A y + 1 ⋯ A n A_{1}A_{2}\cdots A_{y-2} XX A_{y+1}\cdots A_{n} A1A2⋯Ay−2XXAy+1⋯An部分相同,且XX等长。所以 A 1 A 2 ⋯ A y − 1 A y ⋯ A n < A 1 A 2 ⋯ A y A y − 1 ⋯ A n A_{1}A_{2}\cdots A_{y-1}A_{y} \cdots A_{n} < A_{1}A_{2}\cdots A_{y}A_{y-1} \cdots A_{n} A1A2⋯Ay−1Ay⋯An<A1A2⋯AyAy−1⋯An