You are given a tree consisting exactly of n vertices. Tree is a connected undirected graph with n−1 edges. Each vertex v of this tree has a value av assigned to it.
Let dist(x,y) be the distance between the vertices x and y. The distance between the vertices is the number of edges on the simple path between them.
Let’s define the cost of the tree as the following value: firstly, let’s fix some vertex of the tree. Let it be v. Then the cost of the tree is ∑i=1ndist(i,v)⋅ai.
Your task is to calculate the maximum possible cost of the tree if you can choose v arbitrarily.
Input The first line contains one integer n, the number of vertices in the tree (1≤n≤2⋅105).
The second line of the input contains n integers a1,a2,…,an (1≤ai≤2⋅105), where ai is the value of the vertex i.
Each of the next n−1 lines describes an edge of the tree. Edge i is denoted by two integers ui and vi, the labels of vertices it connects (1≤ui,vi≤n, ui≠vi).
It is guaranteed that the given edges form a tree.
Output Print one integer — the maximum possible cost of the tree if you can choose any vertex as v.
Examples Input 8 9 4 1 7 10 1 6 5 1 2 2 3 1 4 1 5 5 6 5 7 5 8 Output 121 Input 1 1337 Output 0 Note Picture corresponding to the first example:
You can choose the vertex 3 as a root, then the answer will be 2⋅9+1⋅4+0⋅1+3⋅7+3⋅10+4⋅1+4⋅6+4⋅5=18+4+0+21+30+4+24+20=121.
In the second example tree consists only of one vertex so the answer is always 0.
题意: 求每个点到其他点的距离乘以点权的和。
思路: 换根dp裸题。
#include <cstdio> #include <cstring> #include <algorithm> #include <cmath> #include <vector> using namespace std; typedef long long ll; const int maxn = 4e5 + 7; int siz[maxn],a[maxn]; int head[maxn],nex[maxn * 2],to[maxn * 2],tot; ll f[maxn],sum[maxn]; int n; void add(int x,int y) { to[++tot] = y; nex[tot] = head[x]; head[x] = tot; } void dfs(int u,int fa) { siz[u] = 1; sum[u] = a[u]; for(int i = head[u];i;i = nex[i]) { int v = to[i]; if(v == fa) continue; dfs(v,u); siz[u] += siz[v]; sum[u] += sum[v]; f[u] += f[v] + sum[v]; } } void dfs2(int u,int fa) { for(int i = head[u];i;i = nex[i]) { int v = to[i]; if(v == fa) continue; ll num = f[u] - sum[v] - f[v]; f[v] += (sum[1] - sum[v]) + num; dfs2(v,u); } } int main() { scanf("%d",&n); for(int i = 1;i <= n;i++) { scanf("%d",&a[i]); } for(int i = 1;i < n;i++) { int x,y;scanf("%d%d",&x,&y); add(x,y);add(y,x); } dfs(1,-1); dfs2(1,-1); ll ans = 0; for(int i = 1;i <= n;i++) { ans = max(ans,f[i]); } printf("%lld\n",ans); return 0; }