牛客15489 Youhane Assembler

    技术2025-07-16  8

    链接

    点击跳转

    题解

    很暴力的做法就是直接把两个串拼起来, r r r串在前, l l l串在后,中间加一个分隔符,然后跑 k m p kmp kmp,最后一个位置的 n e x t next next值就是答案

    如果 r r r串的长度小于 ∑ l e n g t h \sqrt {\sum length} length ,那么我可以直接把 l l l串只保留最后一段长为 l e n g t h r length_r lengthr的后缀,然后做 k m p kmp kmp,单次复杂度是 O ( ∑ l e n g t h ) O(\sqrt {\sum length}) O(length )

    但是如果 r r r串很长呢

    没关系,长度大于 ∑ l e n g t h \sqrt {\sum length} length 的串最多有 ∑ l e n g t h \sqrt {\sum length} length 个,直接预处理即可。预处理就是把这个很长的串放在前面,其余的串都拼在后面然后跑 k m p kmp kmp,单次 O ( ∑ l e n g t h ) O(\sum length) O(length),总复杂度是 O ( ∑ l e n g t h ( ∑ l e n g t h ) ) O(\sqrt {\sum length}(\sum length)) O(length (length))

    L = ∑ l e n g t h L=\sum length L=length

    最后的复杂度是 O ( ( Q + L ) L ) O((Q+L)\sqrt L) O((Q+L)L )

    代码

    #include <bits/stdc++.h> #include <ext/pb_ds/assoc_container.hpp> #include <ext/pb_ds/tree_policy.hpp> #define iinf 0x3f3f3f3f #define linf (1ll<<60) #define eps 1e-8 #define maxn 1000010 #define maxe 1000010 #define cl(x) memset(x,0,sizeof(x)) #define rep(i,a,b) for(i=a;i<=b;i++) #define drep(i,a,b) for(i=a;i>=b;i--) #define em(x) emplace(x) #define emb(x) emplace_back(x) #define emf(x) emplace_front(x) #define fi first #define se second #define de(x) cerr<<#x<<" = "<<x<<endl using namespace std; using namespace __gnu_pbds; typedef long long ll; typedef pair<int,int> pii; typedef pair<ll,ll> pll; ll read(ll x=0) { ll c, f(1); for(c=getchar();!isdigit(c);c=getchar())if(c=='-')f=-f; for(;isdigit(c);c=getchar())x=x*10+c-0x30; return f*x; } struct KMP { int n, next[maxn], t[maxn]; void build(int *r, int len) { int i, j=0; n=len; for(i=1;i<=len;i++)t[i]=r[i]; t[len+1]=0; for(i=2;i<=len;i++) { for(;j and t[j+1]!=t[i];j=next[j]); next[i] = t[j+1]==t[i]?++j:0; } } int move(int pos, int x) { for(;pos and t[pos+1]!=x;pos=next[pos]); return t[pos+1]==x ? pos+1 : 0; } }kmp; char s[maxn]; int r[maxn], start[maxn], len[maxn], t[maxn]; int main() { int N=read(), i, j; rep(i,1,N) { scanf("%s",s+1); len[i]=strlen(s+1); start[i] = start[i-1]+len[i-1]+1; rep(j,1,len[i]) { r[start[i]+j-1] = s[j]; } r[start[i]+len[i]]=i+1000; } int L = start[N]+len[N], S = sqrt(L-N); map<pii,int> big; // S = 1000; rep(i,1,N) { if(len[i]<S)continue; rep(j,1,len[i])t[j]=r[start[i]+j-1]; t[len[i]+1]='$'; rep(j,1,L)t[len[i]+1+j]=r[j]; kmp.build(t,len[i]+1+L); rep(j,1,N) { auto pr = pii(i,j); big[pr] = kmp.next[len[i]+1+start[j]+len[j]-1]; } } int Q=read(); rep(i,1,Q) { int a=read(), b=read(); if(big.find(pii(b,a))!=big.end()) { printf("%d\n",big[pii(b,a)]); } else { rep(j,1,len[b])t[j]=r[start[b]+j-1]; t[len[b]+1]='|'; int tot = len[b]+1; rep(j,max(start[a],start[a]+len[a]-1-len[b]+1),start[a]+len[a]-1) t[++tot]=r[j]; kmp.build(t,tot); printf("%d\n",kmp.next[tot]); } } return 0; }
    Processed: 0.011, SQL: 9