泰勒展开使用逐次逼近的思想,用多项式函数对函数 f ( x ) f(x) f(x)在 x 0 x_0 x0的进行近似拟合,将难以研究的函数转换为简单的多项式形式 f ( x ) = ∑ n = 0 ∞ a n ( x − x 0 ) n \begin{aligned} f(x) = \sum_{n=0}^{\infin} a_n (x-x_0)^n\end{aligned} f(x)=n=0∑∞an(x−x0)n
其中 a n a_n an是常数,推导过程如下:
f ( x 0 ) = a 0 f ′ ( x ) = a 1 + 2 a 2 ( x − x 0 ) + 3 a 3 ( x − x 0 ) 2 + ⋯ f ′ ( x 0 ) = a 1 f ′ ′ ( x ) = 2 a 2 + 6 a 3 ( x − x 0 ) + ⋯ f ′ ′ ( x 0 ) = 2 a 2 f ′ ′ ′ ( x ) = 6 a 3 + ⋯ f ′ ′ ′ ( x 0 ) = 6 a 3 ⋮ f ( n ) ( x 0 ) = n ! a n \begin{aligned} & f(x_0)=a_0 \\ & f'(x)= a_1 + 2a_2(x-x_0) + 3a_3(x-x_0)^2 + \cdots \\ & f'(x_0)=a_1 \\ & f''(x) = 2a_2 + 6a_3(x-x_0) + \cdots \\ & f''(x_0)=2a_2 \\ & f'''(x) = 6a_3 + \cdots \\ & f'''(x_0)=6a_3 \\ & \vdots \\ & f^{(n)}(x_0)=n!a_n \end{aligned} f(x0)=a0f′(x)=a1+2a2(x−x0)+3a3(x−x0)2+⋯f′(x0)=a1f′′(x)=2a2+6a3(x−x0)+⋯f′′(x0)=2a2f′′′(x)=6a3+⋯f′′′(x0)=6a3⋮f(n)(x0)=n!an 得到 a n = f ( n ) ( x 0 ) n ! \begin{aligned} a_n=\frac{f^{(n)}(x_0)}{n!} \end{aligned} an=n!f(n)(x0) 代入泰勒展开式得到 f ( x ) = ∑ n = 0 ∞ f ( n ) ( x 0 ) n ! ( x − x 0 ) n \begin{aligned} f(x) = \sum_{n=0}^{\infin} \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n\end{aligned} f(x)=n=0∑∞n!f(n)(x0)(x−x0)n
将 x − x 0 x-x_0 x−x0记为 h h h,则 x = x 0 + h x=x_0+h x=x0+h,得到 f ( x 0 + h ) = ∑ n = 0 ∞ f ( n ) ( x 0 ) n ! h n \begin{aligned} f(x_0+h) = \sum_{n=0}^{\infin} \frac{f^{(n)}(x_0)}{n!} h^n\end{aligned} f(x0+h)=n=0∑∞n!f(n)(x0)hn 再将 x 0 x_0 x0改为 x x x,得到泰勒级数的最终形式: f ( x + h ) = ∑ n = 0 ∞ f ( n ) ( x ) n ! h n \begin{aligned} f(x+h) = \sum_{n=0}^{\infin} \frac{f^{(n)}(x)}{n!} h^n\end{aligned} f(x+h)=n=0∑∞n!f(n)(x)hn
注意:
这是一个近似表达式等式右边只使用函数在 x x x处的信息常用的泰勒级数 e x = ∑ n = 0 ∞ x n n ! \begin{aligned} e^x = \sum_{n=0}^{\infin} \frac{x^n}{n!} \end{aligned} ex=n=0∑∞n!xn l n ( 1 + x ) = ∑ n = 1 ∞ ( − 1 ) n + 1 x n n \begin{aligned} ln(1+x) = \sum_{n=1}^{\infin} \frac{(-1)^{n+1}x^n}{n} \end{aligned} ln(1+x)=n=1∑∞n(−1)n+1xn
偏微分
对期权价格函数 V ( S , t ) V(S,t) V(S,t),定义
∂ V ∂ S = lim δ S → 0 V ( S + δ S , t ) − V ( S , t ) δ S \begin{aligned} \frac{\partial V}{\partial S} = \lim_{\delta S \to 0} \frac{V(S+\delta S, t) - V(S,t)}{\delta S} \end{aligned} ∂S∂V=δS→0limδSV(S+δS,t)−V(S,t)
∂ V ∂ t = lim δ t → 0 V ( S , t + δ t ) − V ( S , t ) δ t \begin{aligned} \frac{\partial V}{\partial t} = \lim_{\delta t \to 0} \frac{V(S, t+\delta t) - V(S,t)}{\delta t} \end{aligned} ∂t∂V=δt→0limδtV(S,t+δt)−V(S,t)
高阶偏微分是低阶偏微分的偏微分 ∂ 2 V ∂ S 2 = ∂ ∂ V ∂ S ∂ S \begin{aligned} \frac{\partial ^ 2V}{\partial S^2} = \frac{\partial \frac{\partial V}{\partial S}}{\partial S} \end{aligned} ∂S2∂2V=∂S∂∂S∂V
二维泰勒展开
V ( S + δ S , t + δ t ) = V ( S , t ) + δ t ∂ V ∂ t + δ S ∂ V ∂ S + 1 2 ( δ S ) 2 ∂ 2 V ∂ S 2 + 1 2 ( δ t ) 2 ∂ 2 V ∂ t 2 + δ t δ S ∂ 2 V ∂ t ∂ S + ⋯ ≈ V ( S , t ) + δ t ∂ V ∂ t + δ S ∂ V ∂ S + 1 2 ( δ S ) 2 ∂ 2 V ∂ S 2 + ⋯ \begin{aligned} &V(S+\delta S, t+\delta t) \\ = & V(S,t) + \delta t \frac{\partial V}{\partial t} + \delta S \frac{\partial V}{\partial S} + \frac{1}{2} {(\delta S)}^2 \frac{\partial ^ 2V}{\partial S^2} + \frac{1}{2} {(\delta t)}^2 \frac{\partial ^ 2V}{\partial t^2} + \delta t \delta S \frac{\partial ^ 2V}{\partial t\partial S} + \cdots\\ \approx & V(S,t)+\delta t \frac{\partial V}{\partial t} + \delta S \frac{\partial V}{\partial S} + \frac{1}{2} {(\delta S)}^2 \frac{\partial ^ 2V}{\partial S^2} + \cdots \end{aligned} =≈V(S+δS,t+δt)V(S,t)+δt∂t∂V+δS∂S∂V+21(δS)2∂S2∂2V+21(δt)2∂t2∂2V+δtδS∂t∂S∂2V+⋯V(S,t)+δt∂t∂V+δS∂S∂V+21(δS)2∂S2∂2V+⋯
备注:由于资产价格被建模为维纳过程,展开式中 ( δ S ) 2 ∼ δ t {(\delta S)}^2 \sim \delta t (δS)2∼δt, 不能忽略,但是 δ t \delta t δt的二次及以上的高阶项, δ t δ S \delta t \delta S δtδS及高阶项, δ S \delta S δS三次及以上的高阶项被忽略。后面前向和反向方程中的 y y y也有相同的处理。
符号
Δ = ∂ V ∂ S θ = ∂ V ∂ t Γ = ∂ 2 V ∂ S 2 \begin{aligned} \Delta = \frac{\partial V}{\partial S} \\ \theta = \frac{\partial V}{\partial t} \\ \Gamma = \frac{\partial ^ 2V}{\partial S^2} \\ \end{aligned} Δ=∂S∂Vθ=∂t∂VΓ=∂S2∂2V
trinomial random walk 多期trinomial树的模拟结果 最终价格分布非常接近正态分布
转移概率密度函数transition probability density function p ( y , t ; y ′ , t ′ ) p(y,t;y',t') p(y,t;y′,t′)定义为 P r o b ( a < y ′ < b a t t i m e t ′ ∣ y a t t i m e t ) = ∫ a b p ( y , t ; y ′ , t ′ ) d y ′ \begin{aligned} Prob(a<y'<b \ at \ time \ t' | y\ at\ time\ t) = \int_a^b p(y,t;y',t')dy' \end{aligned} Prob(a<y′<b at time t′∣y at time t)=∫abp(y,t;y′,t′)dy′
t t t表示当前时刻 y y y表示当前价格 t ′ t' t′表示未来时刻 y ′ y' y′表示未来价格
转移概率密度函数表示,以前当前 t t t的价格为 y y y,在未来 t ′ t' t′时刻,价格 y ′ y' y′位于给定区间 [ a , b ] [a,b] [a,b]的概率
forward equation 已知:当前时刻 t t t的状态 y y y, 求解:在未来时刻 t ′ t' t′到达状态 y ′ y' y′的概率
p ( y , t ; y ′ , t ′ ) = α A + ( 1 − 2 α ) B + α C \begin{aligned} p(y,t;y',t') = \alpha A + (1-2\alpha) B + \alpha C \end{aligned} p(y,t;y′,t′)=αA+(1−2α)B+αC
其中 A = p ( y , t ; y ′ + δ y , t ′ − δ t ) B = p ( y , t ; y ′ , t ′ − δ t ) C = p ( y , t ; y ′ − δ y , t ′ − δ t ) A ≈ p ( y , t ; y ′ , t ′ ) − δ t ∂ p ∂ t ′ + δ y ∂ p ∂ y ′ + 1 2 δ y 2 ∂ 2 p ∂ y ′ 2 + ⋯ C ≈ p ( y , t ; y ′ , t ′ ) − δ t ∂ p ∂ t ′ − δ y ∂ p ∂ y ′ + 1 2 δ y 2 ∂ 2 p ∂ y ′ 2 + ⋯ B ≈ p ( y , t ; y ′ , t ′ ) − δ t ∂ p ∂ t ′ + ⋯ \begin{aligned} & A = p(y,t;y'+\delta y, t'-\delta t) \\ & B = p(y,t;y', t'-\delta t) \\ & C = p(y,t;y'-\delta y, t'-\delta t) \\ & A \approx p(y,t;y',t') - \delta t \frac{\partial p}{\partial t'} + \delta y \frac{\partial p}{\partial y'} + \frac{1}{2} \delta y^2 \frac{\partial ^2p}{\partial y'^2} + \cdots \\ & C \approx p(y,t;y',t') - \delta t \frac{\partial p}{\partial t'} - \delta y \frac{\partial p}{\partial y'} + \frac{1}{2} \delta y^2 \frac{\partial ^2p}{\partial y'^2} + \cdots \\ & B \approx p(y,t;y',t') - \delta t \frac{\partial p}{\partial t'} + \cdots \\ \end{aligned} A=p(y,t;y′+δy,t′−δt)B=p(y,t;y′,t′−δt)C=p(y,t;y′−δy,t′−δt)A≈p(y,t;y′,t′)−δt∂t′∂p+δy∂y′∂p+21δy2∂y′2∂2p+⋯C≈p(y,t;y′,t′)−δt∂t′∂p−δy∂y′∂p+21δy2∂y′2∂2p+⋯B≈p(y,t;y′,t′)−δt∂t′∂p+⋯
代入化简得到 ∂ p ∂ t ′ = α δ y 2 δ t ∂ 2 p ∂ y ′ 2 \begin{aligned} \frac{\partial p}{\partial t'} = \frac{\alpha \delta y^2}{\delta t} \frac{\partial ^2p}{\partial y'^2} \\ \end{aligned} ∂t′∂p=δtαδy2∂y′2∂2p
当 δ t \delta t δt趋近于0时, δ y \delta y δy也趋近于0。 当 α δ y 2 δ t \begin{aligned} \frac{\alpha \delta y^2}{\delta t}\end{aligned} δtαδy2的极限趋近于有限值时,上述方程才有意义
δ y 2 δ t \begin{aligned} \frac{\delta y^2}{\delta t}\end{aligned} δtδy2 的三个场景:
分子比分母更快的变为0:随机过程collapse为0分子比分母更慢的变为0:随机过程变为无穷分子和分母的阶数相同,即 δ y 2 δ t ∼ O ( 1 ) , δ y ∼ O ( δ t ) \begin{aligned} \frac{\delta y^2}{\delta t} \sim O(1), \delta y \sim O(\sqrt{\delta t}) \end{aligned} δtδy2∼O(1),δy∼O(δt ),备注:这里似乎是个循环论证,因为能推导到这一步,已经假设过 δ y 2 ∼ δ t {\delta y}^2 \sim \delta t δy2∼δt
定义 α δ y 2 δ t = c 2 \begin{aligned} \frac{\alpha \delta y^2}{\delta t} = c^2 \\ \end{aligned} δtαδy2=c2
c c c用于表达波动性: c 2 = 1 2 σ 2 c^2 = \frac{1}{2} \sigma ^2 c2=21σ2
最终的方程变为 ∂ p ∂ t ′ = c 2 ∂ 2 p ∂ y ′ 2 \begin{aligned} \frac{\partial p}{\partial t'} =c^2 \frac{\partial ^2p}{\partial y'^2} \\ \end{aligned} ∂t′∂p=c2∂y′2∂2p
这个方程称为Fokker–Planck或者forward Kolmogorov方程,是一个线性抛物线偏微分方程forward parabolic partial differential equation(方程的解的线性组合仍然是方程的解),用于计算未来时刻 t ′ t' t′的 y y y的概率分布
backward equation 已知:假定未来时刻 t ′ t' t′的状态为 y ′ y' y′, 求解:当前时刻 t t t的状态为 y y y的概率
反向方程与隐马尔可夫链存在关联
p ( y , t ; y ′ , t ′ ) = α A + ( 1 − 2 α ) B + α C \begin{aligned} p(y,t;y',t') = \alpha A + (1-2\alpha) B + \alpha C \end{aligned} p(y,t;y′,t′)=αA+(1−2α)B+αC
其中 A = p ( y + δ y , t + δ t ; y ′ , t ′ ) B = p ( y , t + δ t ; y ′ , t ′ ) C = p ( y − δ y , t + δ t ; y ′ , t ′ ) A ≈ p ( y , t ; y ′ , t ′ ) + δ t ∂ p ∂ t ′ + δ y ∂ p ∂ y ′ + 1 2 δ y 2 ∂ 2 p ∂ y ′ 2 + ⋯ C ≈ p ( y , t ; y ′ , t ′ ) + δ t ∂ p ∂ t ′ − δ y ∂ p ∂ y ′ + 1 2 δ y 2 ∂ 2 p ∂ y ′ 2 + ⋯ B ≈ p ( y , t ; y ′ , t ′ ) + δ t ∂ p ∂ t ′ + ⋯ \begin{aligned} & A = p(y+\delta y,t+\delta t;y', t') \\ & B = p(y,t+\delta t;y', t') \\ & C = p(y-\delta y,t+\delta t;y', t') \\ & A \approx p(y,t;y',t') + \delta t \frac{\partial p}{\partial t'} + \delta y \frac{\partial p}{\partial y'} + \frac{1}{2} \delta y^2 \frac{\partial ^2p}{\partial y'^2} + \cdots \\ & C \approx p(y,t;y',t') + \delta t \frac{\partial p}{\partial t'} - \delta y \frac{\partial p}{\partial y'} + \frac{1}{2} \delta y^2 \frac{\partial ^2p}{\partial y'^2} + \cdots \\ & B \approx p(y,t;y',t') + \delta t \frac{\partial p}{\partial t'} + \cdots \\ \end{aligned} A=p(y+δy,t+δt;y′,t′)B=p(y,t+δt;y′,t′)C=p(y−δy,t+δt;y′,t′)A≈p(y,t;y′,t′)+δt∂t′∂p+δy∂y′∂p+21δy2∂y′2∂2p+⋯C≈p(y,t;y′,t′)+δt∂t′∂p−δy∂y′∂p+21δy2∂y′2∂2p+⋯B≈p(y,t;y′,t′)+δt∂t′∂p+⋯
代入化简得到 ∂ p ∂ t ′ + α δ y 2 δ t ∂ 2 p ∂ y ′ 2 = 0 \begin{aligned} \frac{\partial p}{\partial t'} + \frac{\alpha \delta y^2}{\delta t} \frac{\partial ^2p}{\partial y'^2} = 0 \\ \end{aligned} ∂t′∂p+δtαδy2∂y′2∂2p=0
定义 α δ y 2 δ t = c 2 \begin{aligned} \frac{\alpha \delta y^2}{\delta t} = c^2 \end{aligned} δtαδy2=c2
最终的方程变为 ∂ p ∂ t ′ + c 2 ∂ 2 p ∂ y ′ 2 = 0 \begin{aligned} \frac{\partial p}{\partial t'} + c^2 \frac{\partial ^2p}{\partial y'^2} = 0 \\ \end{aligned} ∂t′∂p+c2∂y′2∂2p=0
与前向方程仅仅只有符号上的差别 BS方程是反向方程
注意:
这里的y可以为负值,但是金融资产的价格,例如股价,不可能是负值三叉树模型只允许 y y y往三个特定值变化,是极其简单的特例不同的金融量,需要不同的模型:股价、利率也叫Similarity Reduction Method,通过引入新的变量并换元减少维度
大部分微分方程没有显式解(无法用初等函数表示,可以类比为大部分问题无法用编程语言的标准库解决),通常用数值解法求解,能求解的是一些形式比较特殊的微分方程。
考虑前向方程 ∂ p ∂ t ′ = c 2 ∂ 2 p ∂ y ′ 2 \begin{aligned} \frac{\partial p}{\partial t'} = c^2 \frac{\partial ^2p}{\partial y'^2} \\ \end{aligned} ∂t′∂p=c2∂y′2∂2p
微分方程的初始条件和边界条件
初始条件 initial conditions:how solution starts off边界条件 boundary conditions:函数在给定y’时的行为(1) 考察一个如下形式的解: p = t ′ a f ( y ′ t ′ b ) \begin{aligned} p = t'^a f(\frac{y'}{t'^b}) \end{aligned} p=t′af(t′by′), 目标是解出常数项 a , b a, b a,b和函数 f ( x ) f(x) f(x)的解析式
令 ξ = y ′ t − b \xi = y' t^{-b} ξ=y′t−b 用链式法则和乘法法则求导 ∂ p ∂ y ′ = t ′ a d f d ξ d ξ d y ′ = t ′ a − b d f d ξ ∂ 2 p ∂ y ′ 2 = t ′ a − 2 b d 2 f d ξ 2 d p d t ′ = a t ′ a − 1 f ( ξ ) + t ′ a d f d ξ ∂ ξ ∂ t ′ = a t ′ a − 1 f ( ξ ) − b y ′ t ′ a − b − 1 d f d ξ \begin{aligned} \frac{\partial p}{\partial y'} = & {t'}^a \frac{df}{d \xi} \frac{d \xi}{dy'} = {t'}^{a-b} \frac{df}{d \xi} \\ \frac{\partial ^2 p}{\partial {y'}^2 } = & {t'}^{a-2b} \frac{d^2f}{d \xi^2} \\ \frac{dp}{dt'} = & a{t'}^{a-1}f(\xi) + {t'}^a \frac{df}{d\xi} \frac{\partial \xi}{\partial t'} \\ = & a{t'}^{a-1}f(\xi) -by'{t'}^{a-b-1} \frac{df}{d\xi} \\ \end{aligned} ∂y′∂p=∂y′2∂2p=dt′dp==t′adξdfdy′dξ=t′a−bdξdft′a−2bdξ2d2fat′a−1f(ξ)+t′adξdf∂t′∂ξat′a−1f(ξ)−by′t′a−b−1dξdf
(2)带入原方程,得到 a t ′ a − 1 f ( ξ ) − b y ′ t ′ a − b − 1 d f d ξ = c 2 t ′ a − 2 b d 2 f d ξ 2 \begin{aligned} a{t'}^{a-1}f(\xi) -by'{t'}^{a-b-1} \frac{df}{d\xi} = c^2 {t'}^{a-2b} \frac{d^2f}{d \xi^2} \end{aligned} at′a−1f(ξ)−by′t′a−b−1dξdf=c2t′a−2bdξ2d2f
消去y’和部分t’得到 a f ( ξ ) − b ξ d f d ξ = c 2 t ′ − 2 b + 1 d 2 f d ξ 2 \begin{aligned} af(\xi) - b \xi \frac{df}{d\xi}=c^2{t'}^{-2b+1} \frac{d^2f}{d \xi ^2} \end{aligned} af(ξ)−bξdξdf=c2t′−2b+1dξ2d2f
左边与 t ′ t' t′无关,说明右边应该也没有 t ′ t' t′项,所以 b = 1 2 b=\frac{1}{2} b=21,
(3) 带入b得到 a f ( ξ ) − 1 2 ξ d f d ξ = c 2 d 2 f d ξ 2 \begin{aligned} af(\xi) - \frac{1}{2} \xi \frac{df}{d\xi}=c^2 \frac{d^2f}{d \xi ^2} \end{aligned} af(ξ)−21ξdξdf=c2dξ2d2f
备注:这里没有给出推导过程
解微分方程得到原方程的一个解形式为: p = t ′ a f ( y ′ t ′ ) \begin{aligned} p={t'}^a f(\frac{y'}{\sqrt{t'}}) \end{aligned} p=t′af(t′ y′) 因为可以选择不同的常数 a a a,这是一个解集
(4)考虑(问题的出发点:转移概率密度函数) ∫ − ∞ ∞ p ( y ′ , t ′ ) d y ′ = 1 = ∫ − ∞ ∞ t ′ a f ( y ′ t ′ ) d y ′ \begin{aligned} \int_{-\infin}^{\infin} p(y',t')dy' = 1 = \int_{-\infin}^{\infin} {t'}^a f(\frac{y'}{\sqrt{t'}})dy' \end{aligned} ∫−∞∞p(y′,t′)dy′=1=∫−∞∞t′af(t′ y′)dy′
令 y ′ = t ′ 1 2 u y' = {t'}^{\frac{1}{2}} u y′=t′21u 带入得到 t ′ a + 1 2 ∫ − ∞ ∞ f ( u ) d u = 1 \begin{aligned} {t'}^{a + \frac{1}{2}} \int_{-\infin}^{\infin} f(u)du=1 \end{aligned} t′a+21∫−∞∞f(u)du=1 同样因为右边与 t ′ t' t′无关,所以 a = − 1 2 a=-\frac{1}{2} a=−21
同时有: ∫ − ∞ ∞ f ( u ) d u = 1 \begin{aligned} \int_{-\infin}^{\infin} f(u)du=1 \end{aligned} ∫−∞∞f(u)du=1
(5)带入 a a a得到: − 1 2 f ( ξ ) − 1 2 ξ d f d ξ = c 2 d 2 f d ξ 2 \begin{aligned} -\frac{1}{2}f(\xi) - \frac{1}{2} \xi \frac{df}{d\xi}=c^2 \frac{d^2f}{d \xi ^2} \end{aligned} −21f(ξ)−21ξdξdf=c2dξ2d2f
再次求解微分方程 − 1 2 d ( ξ f ) d ξ = c 2 f ′ ′ → − 1 2 ξ f = c 2 f ′ + C o n s t \begin{aligned} -\frac{1}{2} \frac {d(\xi f)}{d\xi}=c^2 f'' \rightarrow -\frac{1}{2} \xi f = c^2 f' + Const \end{aligned} −21dξd(ξf)=c2f′′→−21ξf=c2f′+Const 当 ξ \xi ξ趋向于 ∞ \infin ∞时, f ( ξ ) f(\xi) f(ξ)和 f ′ ( ξ ) f'(\xi) f′(ξ)都趋向于0, 因此 C o n s t Const Const应该为0
c 2 d ( l n f ) d ξ = − 1 2 ξ → f ( ξ ) = A e − ξ 2 4 c 2 \begin{aligned} c^2 \frac{d(lnf)}{d\xi} = -\frac{1}{2} \xi \rightarrow f(\xi) = Ae^{-\frac{\xi^2}{4c^2}} \end{aligned} c2dξd(lnf)=−21ξ→f(ξ)=Ae−4c2ξ2
(6)由于 ∫ − ∞ ∞ f ( u ) d u = 1 \begin{aligned} \int_{-\infin}^{\infin} f(u)du=1 \end{aligned} ∫−∞∞f(u)du=1
最终得到 p p p的解析式为 p = 1 2 c π t ′ e x p ( − y ′ 2 4 c 2 t ′ ) \begin{aligned} p = \frac{1}{2c \sqrt{\pi t'}} exp(- \frac{{y'}^2}{4c^2t'}) \end{aligned} p=2cπt′ 1exp(−4c2t′y′2)
表示 y ′ y' y′服从正态分布 y ′ ∼ N ( 0 , 2 c 2 t ′ ) y' \sim N(0, 2c^2t') y′∼N(0,2c2t′)
(7)最终解 p ( y , t ; y ′ , t ′ ) = 1 2 c π ( t ′ − t ) e x p ( − ( y ′ − y ) 2 4 c 2 ( t ′ − t ) ) \begin{aligned} p(y, t; y', t') = \frac{1}{2c \sqrt{\pi (t' - t)}} exp(- \frac{{(y' - y)}^2}{4c^2 (t'-t)}) \end{aligned} p(y,t;y′,t′)=2cπ(t′−t) 1exp(−4c2(t′−t)(y′−y)2)
也就是,如果在t时刻看t’时刻, 转移PDF的均值为 y y y, 方差为 4 c 2 ( t ′ − t ) 4c^2 (t'-t) 4c2(t′−t)
这就是trinomial random walk前向方程的转移概率密度函数
预测时间越长,方差越大(表示预测准确的概率越低)