slam小车实现——ROS篇:实现gmapping建图(静态)

    技术2025-09-04  27

    gmapping静态建图需要满足以下几个条件

    基于Ubuntu16.04 ros Kinect

    一、发布 “/odom”:

    启动小车odom节点(待实现);模拟发布: rostopic pub -r 10 /odom nav_msgs/Odometry '{pose: {pose: {position: {x: 0, y: 0, z: 0}, orientation: {x: 0, y: 0, z: 0, w: 0}}}, twist: {twist: {linear: {x: 0, y: 0, z: 0}, angular: {x: 0, y: 0, z: 0}}}}'

    二、发布"/scan":

    启动激光雷达驱动节点,本文使用的是杉川的delta-2A激光雷达,价格比较便宜,将其配套的ros功能包安装好在自己的工作空间,输入一下命令启动激光雷达驱动节点即可:

    sudo chmod 777 /dev/ttyUSB0 && rosrun delta_lidar delta_lidar_node

    三、发布tf:

    为了使gmapping能够知道odom、map、base_link之间的关系,需要发布相应的tf,且本文为了简化认为激光雷达安装在base_link坐标系原点,无需转换;

    各个坐标系原点含义: 1、base_link:机器人位置、激光雷达位置 2、odom:里程计安装位置

    1、发布 base_link—>map坐标转换的实现步骤 :
    发布“/cmd_vel”用以描述车体运动状态,本文使用模拟发布 rostopic pub -r 10 /cmd_vel geometry_msgs/Twist '{linear: {x: 0, y: 0, z: 0}, angular: {x: 0, y: 0, z: 0}}' 订阅“/cmd_vel”,使用以下回调函数计算机器人位置到map坐标系下的转换,发布base_link—>map坐标转换: void VelCallback(const geometry_msgs::TwistPtr& vel) { // linear change x = x+vel->linear.x; y = y+vel->linear.y; z = z+vel->linear.z; // angular change roll = roll+vel->angular.x/pi*180; pit = pit+vel->angular.y/pi*180; yaw = yaw+vel->angular.z/pi*180; // transform between odom and base_link tf::Transform trans; trans.setOrigin(tf::Vector3(x,y,z)); tf::Quaternion q; q.setRPY(roll,pit,yaw); trans.setRotation(q); //send transform map --- parent frame , base_link --- child frame tfbrd_.sendTransform(tf::StampedTransform(trans,ros::Time::now(),"map","base_link")); //base_link rate.sleep(); }
    2、参照base_link的方式,发布odom—>map坐标转换
    3、最终tf呈现的发布效果

    四、按照实际情况修改好gmapping的启动文件参数后,启动gmapping

    launch启动文件参考书籍资料:《ROS机器人开发实践》,感兴趣的可以去GitHub下载:

    git clone https://github.com/huchunxu/ros_exploring.git gmapping.launch <launch> <arg name="scan_topic" default="scan" /> <node pkg="gmapping" type="slam_gmapping" name="slam_gmapping" output="screen" clear_params="true"> <param name="odom_frame" value="odom"/> <param name="map_update_interval" value="5.0"/> <!-- Set maxUrange < actual maximum range of the Laser --> <param name="maxRange" value="5.0"/> <param name="maxUrange" value="4.5"/> <param name="sigma" value="0.05"/> <param name="kernelSize" value="1"/> <param name="lstep" value="0.05"/> <param name="astep" value="0.05"/> <param name="iterations" value="5"/> <param name="lsigma" value="0.075"/> <param name="ogain" value="3.0"/> <param name="lskip" value="0"/> <param name="srr" value="0.01"/> <param name="srt" value="0.02"/> <param name="str" value="0.01"/> <param name="stt" value="0.02"/> <param name="linearUpdate" value="0.5"/> <param name="angularUpdate" value="0.436"/> <param name="temporalUpdate" value="-1.0"/> <param name="resampleThreshold" value="0.5"/> <param name="particles" value="80"/> <param name="xmin" value="-1.0"/> <param name="ymin" value="-1.0"/> <param name="xmax" value="1.0"/> <param name="ymax" value="1.0"/> <param name="delta" value="0.05"/> <param name="llsamplerange" value="0.01"/> <param name="llsamplestep" value="0.01"/> <param name="lasamplerange" value="0.005"/> <param name="lasamplestep" value="0.005"/> <remap from="scan" to="$(arg scan_topic)"/> </node> </launch> gmapping_demo.launch <launch> <include file="$(find mrobot_navigation)/launch/gmapping.launch"/> <!-- 启动rviz --> <node pkg="rviz" type="rviz" name="rviz" args="-d $(find mrobot_navigation)/rviz/gmapping.rviz"/> </launch> 输入运行命令 roslaunch mrobot_navigation gmapping_demo.launch

    五、建图完成

    认为建图完成后,将图保存到/home/kiltto/develop/mapSave/目录,命名为“xxx”: rosrun map_server map_saver -f /home/kiltto/develop/mapSave/xxx

    六、使用地图:

    rosrun map_server map_server /home/kiltto/develop/mapSave/xxx.yaml
    Processed: 0.010, SQL: 9