nowcoder14694 栗酱的数列

    技术2025-09-06  55

    链接

    点击跳转

    题解

    把原来的式子移项,就得到 a 1 − a 2 = b 2 − b 1 a_1-a_2=b_2-b1 a1a2=b2b1这样的式子,那么 ( − a 1 ) − ( − a 2 ) = b 1 − b 2 (-a_1)-(-a_2) = b_1-b_2 (a1)(a2)=b1b2

    所以先把第一个序列取相反数,然后直接转换成差分序列的子串匹配问题

    k m p kmp kmp即可

    代码

    #include <bits/stdc++.h> #include <ext/pb_ds/assoc_container.hpp> #include <ext/pb_ds/tree_policy.hpp> #define iinf 0x3f3f3f3f #define linf (1ll<<60) #define eps 1e-8 #define maxn 400010 #define cl(x) memset(x,0,sizeof(x)) #define rep(i,a,b) for(i=a;i<=b;i++) #define drep(i,a,b) for(i=a;i>=b;i--) #define em(x) emplace(x) #define emb(x) emplace_back(x) #define emf(x) emplace_front(x) #define fi first #define se second #define de(x) cerr<<#x<<" = "<<x<<endl using namespace std; using namespace __gnu_pbds; typedef long long ll; typedef pair<int,int> pii; typedef pair<ll,ll> pll; ll read(ll x=0) { ll c, f(1); for(c=getchar();!isdigit(c);c=getchar())if(c=='-')f=-f; for(;isdigit(c);c=getchar())x=x*10+c-0x30; return f*x; } struct KMP { int n, next[maxn], t[maxn]; void build(ll *r, int len) { int i, j=0; n=len; for(i=1;i<=len;i++)t[i]=r[i]; t[len+1]=0; for(i=2;i<=len;i++) { for(;j and t[j+1]!=t[i];j=next[j]); next[i] = t[j+1]==t[i]?++j:0; } } }kmp; ll a[maxn], b[maxn], r[maxn]; int main() { ll T=read(); while(T--) { ll n=read(), m=read(), k=read(), i, j; rep(i,1,n)a[i]=(k-read()%k)%k; rep(i,1,m)b[i]=read()%k; drep(i,n,1)a[i]=(a[i]-a[i-1]+k)%k; drep(i,m,1)b[i]=(b[i]-b[i-1]+k)%k; rep(i,1,m-1)r[i]=b[i+1]; r[m]=k+5; rep(i,1,n-1)r[m+i]=a[i+1]; kmp.build(r,m+n-1); ll ans=0; rep(i,m+1,m+n-1)ans+=(kmp.next[i]==m-1); printf("%lld\n",ans); } return 0; }
    Processed: 0.009, SQL: 9