##二分查找解题框架 注意:
尽量不用else,用else if把每种情况说清楚;left+(right-left)/2,防止(left+right)/2太大而导致溢出。其中…标记的地方,就是可能出现的细节问题。 int binarySearch(int[] nums, int target) { int left = 0, right = ...; while(...) { int mid = left + (right - left) / 2; if (nums[mid] == target) { ... } else if (nums[mid] < target) { left = ... } else if (nums[mid] > target) { right = ... } } return ...; }为什么while中的循环条件是<=而不是< ? 答:因为初始化 right 的赋值是 nums.length - 1,即最后一个元素的索引,而不是 nums.length。 这二者可能出现在不同功能的二分查找中,区别是:前者相当于两端都闭区间 [left, right],后者相当于左闭右开区间 [left, right),因为索引大小为 nums.length 是越界的。 我们这个算法中使用的是前者 [left, right] 两端都闭的区间。这个区间其实就是每次进行搜索的区间。 什么时候应该停止搜索呢?当然,找到了目标值的时候可以终止:
if(nums[mid] == target) return mid;但如果没找到,就需要 while 循环终止,然后返回 -1。那 while 循环什么时候应该终止?搜索区间为空的时候应该终止,意味着你没得找了,就等于没找到嘛。
while(left <= right) 的终止条件是 left == right + 1,写成区间的形式就是 [right + 1, right],或者带个具体的数字进去 [3, 2],可见这时候区间为空,因为没有数字既大于等于 3 又小于等于 2 的吧。所以这时候 while 循环终止是正确的,直接返回 -1 即可。
while(left < right) 的终止条件是 left == right,写成区间的形式就是 [left, right],或者带个具体的数字进去 [2, 2],这时候区间非空,还有一个数 2,但此时 while 循环终止了。也就是说这区间 [2, 2] 被漏掉了,索引 2 没有被搜索,如果这时候直接返回 -1 就是错误的。
当然,如果你非要用 while(left < right) 也可以,我们已经知道了出错的原因,就打个补丁好了:
//... while(left < right) { // ... } return nums[left] == target ? left : -1;为什么left=mid+1,right=mid-1? 刚才明确了「搜索区间」这个概念,而且本算法的搜索区间是两端都闭的,即 [left, right]。那么当我们发现索引 mid 不是要找的 target 时,下一步应该去搜索哪里呢?
当然是去搜索 [left, mid-1] 或者 [mid+1, right] 对不对?因为 mid 已经搜索过,应该从搜索区间中去除。
此算法的缺陷 比如说给你有序数组 nums = [1,2,2,2,3],target 为 2,此算法返回的索引是 2,没错。但是如果我想得到 target 的左侧边界,即索引 1,或者我想得到 target 的右侧边界,即索引 3,这样的话此算法是无法处理的。
这样的需求很常见,你也许会说,找到一个 target,然后向左或向右线性搜索不行吗?可以,但是不好,因为这样难以保证二分查找对数级的复杂度了。
1、分析二分查找代码时,不要出现 else,全部展开成 else if 方便理解。 2、注意「搜索区间」和 while 的终止条件,如果存在漏掉的元素,记得在最后检查。 3、如果将「搜索区间」全都统一成两端都闭,好记,只要稍改 nums[mid] == target 条件处的代码和返回的逻辑即可。
思路和算法
题目要求算法时间复杂度必须是 O(\log n)O(logn) 的级别,这提示我们可以使用二分搜索的方法。
但是数组本身不是有序的,进行旋转后只保证了数组的局部是有序的,这还能进行二分搜索吗?答案是可以的。
可以发现的是,我们将数组从中间分开成左右两部分的时候,一定有一部分的数组是有序的。拿示例来看,我们从 6 这个位置分开以后数组变成了 [4, 5, 6] 和 [7, 0, 1, 2] 两个部分,其中左边 [4, 5, 6] 这个部分的数组是有序的,其他也是如此。
这启示我们可以在常规二分搜索的时候查看当前 mid 为分割位置分割出来的两个部分 [l, mid] 和 [mid + 1, r] 哪个部分是有序的,并根据有序的那个部分确定我们该如何改变二分搜索的上下界,因为我们能够根据有序的那部分判断出 target 在不在这个部分:
如果 [l, mid - 1] 是有序数组,且 target 的大小满足 [\textit{nums}[l],\textit{nums}[mid])[nums[l],nums[mid]),则我们应该将搜索范围缩小至 [l, mid - 1],否则在 [mid + 1, r] 中寻找。 如果 [mid, r] 是有序数组,且 target 的大小满足 (\textit{nums}[mid+1],\textit{nums}[r]](nums[mid+1],nums[r]],则我们应该将搜索范围缩小至 [mid + 1, r],否则在 [l, mid - 1] 中寻找。
需要注意的是,二分的写法有很多种,所以在判断 target 大小与有序部分的关系的时候可能会出现细节上的差别。
class Solution { public: int search(vector<int>& nums, int target) { if(nums.size()<=0) return -1; int left=0; int right=nums.size()-1; while(left<=right) { int mid=left+(right-left)/2; if(nums[mid]==target)return mid; else if(nums[0]<=nums[mid])//判断如果0到mid为有序序列;注意必须<=nums[mid]如果<nums[mid]:那么当0=mid时另一个区间就包含了最大值nums[mid] { if(target<nums[mid]&&target>=nums[0])right=mid-1;//如果target在[0,mid)之间 else left=mid+1; }else{//如果mid到end为有序序列 if(target>nums[mid]&&target<=nums[nums.size()-1])left=mid+1;//如果target在(mid,end-1]之间 else right=mid-1; } } return -1; } }; class Solution { public: int search(vector<int>& nums, int target) { if(nums.size()<=0) return false; int left=0; int right=nums.size()-1; while(left<=right) { while(left!=right&&nums[left]==nums[right])right--;// int mid=left+(right-left)/2; if(nums[mid]==target)return true; else if(nums[0]<=nums[mid]) { if(target<nums[mid]&&target>=nums[left])right=mid-1; else left=mid+1; }else{ if(target>nums[mid]&&target<=nums[right])left=mid+1; else right=mid-1; } } return false; } };