10 ,df 操作 :排序,升序,降序 (data.sort

    技术2025-10-24  15

    1 ,排序 : data.sort_values(“Age”,inplace=True)

    目的 : 用年龄排序代码 : if __name__ == '__main__': # 读文件 csv data = pd.read_csv("titanic_train.csv") # 空值处理 : 删除掉空值,为了看排序结果的方便 data = data.dropna() # 排序 : 用年龄排序 : Age ,inplace( 是否生成新的 df ) data.sort_values("Age",inplace=True) # 打印 res = data[["PassengerId","Survived","Pclass","Age","Fare"]] print(res) ============================================================ PassengerId Survived Pclass Age Fare 305 306 1 1 0.92 151.5500 183 184 1 2 1.00 39.0000 205 206 0 3 2.00 10.4625 297 298 0 1 2.00 151.5500 340 341 1 2 2.00 26.0000 193 194 1 2 3.00 26.0000 10 11 1 3 4.00 16.7000 445 446 1 1 4.00 81.8583

    2 ,降序: data.sort_values(“Age”,inplace=True,ascending=False)

    默认 : 升序目的 : 降序代码 : if __name__ == '__main__': # 读文件 csv data = pd.read_csv("titanic_train.csv") # 空值处理 : 删除掉空值,为了看排序结果的方便 data = data.dropna() # 排序 : 用年龄排序 : Age ,inplace( 是否生成新的 df ) data.sort_values("Age",inplace=True,ascending=False) # 打印 res = data[["PassengerId","Survived","Pclass","Age","Fare"]] print(res) ============================================================ PassengerId Survived Pclass Age Fare 630 631 1 1 80.00 30.0000 96 97 0 1 71.00 34.6542 745 746 0 1 70.00 71.0000 456 457 0 1 65.00 26.5500
    Processed: 0.009, SQL: 9