参考文档:
caffe网络模型各层详解(中文版),一份详细说明caffe prototxt的文档
准备数据 ==> 定义Net ==> 配置Solver ==> Run ==> 分析结果
进入网络模型的prototxt文件所在位置,运行下面命令,会在当前位置输出xxx.png
python ~/caffe/python/draw_net.py xxx.prototxt xxx.png --rankdir=BT # BT=Bottom to Top,该参数还可以为TB,LR,RL等caffe后可跟4个命令:
train:训练 caffe train -solver lenet_solver.prototxt #保存训练log文件 caffe train -solver lenet_solver.prototxt 2>1 | tee train.log #屏幕没有输出 caffe train -solver lenet_solver.prototxt 2>&1 | tee train.log #屏幕也有输出 #2>1是重定向错误输出到标准输出 testdevice_querytime:评估模型运行时间 caffe time -model lenet.prototxt -iterations 100 # cpu上跑 caffe time -model lenet.prototxt -iterations 100 -gpu 0 # 0号GPU上跑先保存训练的log文件,然后
法1:直接用caffe/tools/extra中的plot_training_log.py.example输入:python tools/extra/plot_training_log.py.example会输出该函数的用法信息
Usage: ./plot_training_log.py chart_type[0-7] /where/to/save.png /path/to/first.log ... Notes: 1. Supporting multiple logs. 2. Log file name must end with the lower-cased ".log". Supported chart types: 0: Test accuracy vs. Iters 1: Test accuracy vs. Seconds 2: Test loss vs. Iters 3: Test loss vs. Seconds 4: Train learning rate vs. Iters 5: Train learning rate vs. Seconds 6: Train loss vs. Iters 7: Train loss vs. Seconds例如:
python tools/extra/plot_training_log.py.example 6 loss.png path/to/train.log #会在当前目录生成train.log.train, tarin.log.test两个解析出的文件和loss.png图片 法2:用caffe/tools/extra中的parse_log.py.解析出log.train和log.test文件,然后自己用matplotlib画用法:
python tools/extra/parse_log.py logfile_path output_dir
