初识Flink-wordcount

    技术2025-11-07  24

    pom

    要注意scala版本和你的本地的scala的版本对不上可能会出问题

    <?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>hht</groupId> <artifactId>flink</artifactId> <version>1.0-SNAPSHOT</version> <dependencies> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-scala_2.11</artifactId> <version>1.7.0</version> </dependency> <!-- https://mvnrepository.com/artifact/org.apache.flink/flink-streaming-scala --> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-streaming-scala_2.11</artifactId> <version>1.7.0</version> </dependency> </dependencies> <build> <plugins> <!-- 该插件用于将Scala代码编译成class文件 --> <plugin> <groupId>net.alchim31.maven</groupId> <artifactId>scala-maven-plugin</artifactId> <version>3.4.6</version> <executions> <execution> <!-- 声明绑定到maven的compile阶段 --> <goals> <goal>compile</goal> <goal>testCompile</goal> </goals> </execution> </executions> </plugin> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-assembly-plugin</artifactId> <version>3.0.0</version> <configuration> <descriptorRefs> <descriptorRef>jar-with-dependencies</descriptorRef> </descriptorRefs> </configuration> <executions> <execution> <id>make-assembly</id> <phase>package</phase> <goals> <goal>single</goal> </goals> </execution> </executions> </plugin> </plugins> </build> </project>

    批处理版本wordcount’

    package com.hht.flink import org.apache.flink.api.scala.{AggregateDataSet, DataSet, ExecutionEnvironment} object WordCountBatch { def main(args: Array[String]): Unit = { val env: ExecutionEnvironment = ExecutionEnvironment.getExecutionEnvironment val input = "C:\\Users\\Administrator\\Desktop\\a.txt" val dataSet: DataSet[String] = env.readTextFile(input) import org.apache.flink.api.scala._ val aggregateDataSet: AggregateDataSet[(String, Int)] = dataSet.flatMap(_.split(" ")).map((_,1)).groupBy(0).sum(1) aggregateDataSet.print() } }

    流处理版本WordCount

    package com.hht.flink import org.apache.flink.streaming.api.scala.{DataStream, StreamExecutionEnvironment} import org.apache.flink.api.scala._ object WordCountStream { def main(args: Array[String]): Unit = { val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment val dataStream: DataStream[String] = env.socketTextStream("192.168.199.100",9999) //如果流过来时候输入空格,可能会有空字符 filter(_.nonEmpty)过滤掉空字符 val word2CountDataStream: DataStream[(String, Int)] = dataStream.flatMap(_.split(" ")).filter(_.nonEmpty).map((_,1)).keyBy(0).sum(1) word2CountDataStream.print() env.execute() } }
    Processed: 0.015, SQL: 9