2. numpy的使用

    技术2022-07-10  116

     

    import numpy as np

    numpy的基本操作

    a = np.array([[1,2,3],[4,5,6]]) b = np.array([1,2,3,4]) c = np.array([[[1,2,3],[4,5,6]],[[1,2,3],[4,5,6]]]) print(a.shape) print(b.shape) print(c.shape)

    (2, 3) (4,) (2, 2, 3)

     

    a.dtype

     

    dtype('int64')

     

    a.itemsize

     

    8

     

    a.size

     

    6

     

    c.ndim

     

    3

     

    生成数组

    d = np.array([[1,2,3],[4,5,6]],dtype=np.float32) d.dtype

     

    dtype('float32')

     

    e=np.zeros([3,4],dtype="float32") e

     

    array([[0., 0., 0., 0.],        [0., 0., 0., 0.],        [0., 0., 0., 0.]], dtype=float32)

     

    e.dtype

     

    dtype('float32')

     

    e=np.zeros([3,4],dtype=np.float32) e

     

    array([[0., 0., 0., 0.],        [0., 0., 0., 0.],        [0., 0., 0., 0.]], dtype=float32)

     

    f=np.ones([3,4],dtype=np.int32) f

     

    array([[1, 1, 1, 1],        [1, 1, 1, 1],        [1, 1, 1, 1]], dtype=int32)

     

    # 从现有数组生成 score = np.array([[80, 89, 86, 67, 79], [78, 97, 89, 67, 81], [90, 94, 78, 67, 74], [91, 91, 90, 67, 69], [76, 87, 75, 67, 86], [70, 79, 84, 67, 84], [94, 92, 93, 67, 64], [86, 85, 83, 67, 80]]) score

     

    array([[80, 89, 86, 67, 79],        [78, 97, 89, 67, 81],        [90, 94, 78, 67, 74],        [91, 91, 90, 67, 69],        [76, 87, 75, 67, 86],        [70, 79, 84, 67, 84],        [94, 92, 93, 67, 64],        [86, 85, 83, 67, 80]])

     

    score1=np.array(score) score2=np.asarray(score) score3=np.copy(score)

    score[0][0]=100

    score

     

    array([[100,  89,  86,  67,  79],        [ 78,  97,  89,  67,  81],        [ 90,  94,  78,  67,  74],        [ 91,  91,  90,  67,  69],        [ 76,  87,  75,  67,  86],        [ 70,  79,  84,  67,  84],        [ 94,  92,  93,  67,  64],        [ 86,  85,  83,  67,  80]])

     

    score2

     

    array([[100,  89,  86,  67,  79],        [ 78,  97,  89,  67,  81],        [ 90,  94,  78,  67,  74],        [ 91,  91,  90,  67,  69],        [ 76,  87,  75,  67,  86],        [ 70,  79,  84,  67,  84],        [ 94,  92,  93,  67,  64],        [ 86,  85,  83,  67,  80]])

     

    # 生成固定范围的数组 np.linspace(0, 100, 10)

     

    array([  0.        ,  11.11111111,  22.22222222,  33.33333333,         44.44444444,  55.55555556,  66.66666667,  77.77777778,         88.88888889, 100.        ])

     

    np.arange(10, 50, 15)

     

    array([10, 25, 40])

     

    a=np.random.uniform(0,100,1000000)

    import matplotlib.pyplot as plt plt.figure(figsize=(20,8),dpi=80) plt.hist(a) plt.show()

    <Figure size 1600x640 with 1 Axes>

     

    b=np.random.normal(0,1,(100,100)) b

     

    array([[-6.54070831e-01, -8.58237690e-01,  1.12840828e-03, ...,         -5.69480307e-02,  3.55998992e-01, -4.75176936e-01],        [ 6.76076814e-01,  1.47650320e+00,  4.61246907e-01, ...,          2.76736091e+00,  2.13077009e-01, -3.92740201e-01],        [ 6.14808294e-01, -1.56088314e-01,  8.86520985e-03, ...,          1.47150511e+00,  4.02858641e-01,  2.24224565e+00],        ...,        [-1.26753533e+00, -1.46173745e-01, -1.42753958e+00, ...,         -8.50436456e-02,  5.38332925e-01, -1.05123949e+00],        [-7.50317584e-02, -4.60182497e-01,  2.16468102e-01, ...,         -1.38952087e-01, -4.67473834e-01,  1.08061128e+00],        [-2.42025812e-01, -9.83338435e-02,  1.08822672e-01, ...,         -1.26860857e+00,  3.39079875e-01,  2.23547985e-01]])

     

    plt.figure(figsize=(20,8),dpi=80) plt.hist(b,100) plt.show()

     

     

    数组的基本操作

    # 创建符合正态分布的8只股票10天的涨跌幅数据 stock_change = np.random.normal(0, 1, (8, 10)) stock_change

     

    array([[-0.5889853 , -0.93535336, -0.0675299 , -0.72403031, -0.86873673,          0.2366924 ,  0.91934989,  0.95733701,  0.7036584 , -0.25490962],        [-0.99235101,  0.70940651, -0.66934701, -0.33760595,  1.75578837,         -0.17527665,  1.127985  ,  1.16480656,  0.60324222,  2.220063  ],        [-1.3326412 , -1.01831572, -1.09038797,  0.35145548, -1.52407572,          1.24380911,  0.53576183, -0.87476354,  0.94061172, -1.54695238],        [-0.6141568 ,  0.34004292,  0.53421929,  0.93273841, -2.39181704,          0.73553393, -0.37974303,  0.12472411,  0.31243104, -0.09388522],        [ 0.63699391,  0.54513968, -1.45114066,  0.12302606,  0.8179262 ,         -0.98861413, -1.37164055,  0.04710424,  0.35452202, -1.77008598],        [ 0.05821616, -0.10157081, -0.0177392 , -0.80556969, -0.644111  ,          1.62028286,  0.12565102,  0.83290996,  1.06604483,  0.88367563],        [ 1.82724499, -0.625139  , -1.00688955, -1.31627874, -0.81109591,          0.96967537,  0.75956849, -0.80162364,  0.44827989,  2.05341272],        [-1.7788185 ,  0.79750866, -0.29012385,  0.60888444, -1.05643106,          0.17126915, -2.24288296,  0.30024122, -0.44027555,  2.33346992]])

     

    stock_change[0, 0:3]

     

    array([-0.5889853 , -0.93535336, -0.0675299 ])

     

    stock_change.reshape((10,8))

     

    array([[-0.5889853 , -0.93535336, -0.0675299 , -0.72403031, -0.86873673,          0.2366924 ,  0.91934989,  0.95733701],        [ 0.7036584 , -0.25490962, -0.99235101,  0.70940651, -0.66934701,         -0.33760595,  1.75578837, -0.17527665],        [ 1.127985  ,  1.16480656,  0.60324222,  2.220063  , -1.3326412 ,         -1.01831572, -1.09038797,  0.35145548],        [-1.52407572,  1.24380911,  0.53576183, -0.87476354,  0.94061172,         -1.54695238, -0.6141568 ,  0.34004292],        [ 0.53421929,  0.93273841, -2.39181704,  0.73553393, -0.37974303,          0.12472411,  0.31243104, -0.09388522],        [ 0.63699391,  0.54513968, -1.45114066,  0.12302606,  0.8179262 ,         -0.98861413, -1.37164055,  0.04710424],        [ 0.35452202, -1.77008598,  0.05821616, -0.10157081, -0.0177392 ,         -0.80556969, -0.644111  ,  1.62028286],        [ 0.12565102,  0.83290996,  1.06604483,  0.88367563,  1.82724499,         -0.625139  , -1.00688955, -1.31627874],        [-0.81109591,  0.96967537,  0.75956849, -0.80162364,  0.44827989,          2.05341272, -1.7788185 ,  0.79750866],        [-0.29012385,  0.60888444, -1.05643106,  0.17126915, -2.24288296,          0.30024122, -0.44027555,  2.33346992]])

     

    stock_change.T

     

    array([[-0.5889853 , -0.99235101, -1.3326412 , -0.6141568 ,  0.63699391,          0.05821616,  1.82724499, -1.7788185 ],        [-0.93535336,  0.70940651, -1.01831572,  0.34004292,  0.54513968,         -0.10157081, -0.625139  ,  0.79750866],        [-0.0675299 , -0.66934701, -1.09038797,  0.53421929, -1.45114066,         -0.0177392 , -1.00688955, -0.29012385],        [-0.72403031, -0.33760595,  0.35145548,  0.93273841,  0.12302606,         -0.80556969, -1.31627874,  0.60888444],        [-0.86873673,  1.75578837, -1.52407572, -2.39181704,  0.8179262 ,         -0.644111  , -0.81109591, -1.05643106],        [ 0.2366924 , -0.17527665,  1.24380911,  0.73553393, -0.98861413,          1.62028286,  0.96967537,  0.17126915],        [ 0.91934989,  1.127985  ,  0.53576183, -0.37974303, -1.37164055,          0.12565102,  0.75956849, -2.24288296],        [ 0.95733701,  1.16480656, -0.87476354,  0.12472411,  0.04710424,          0.83290996, -0.80162364,  0.30024122],        [ 0.7036584 ,  0.60324222,  0.94061172,  0.31243104,  0.35452202,          1.06604483,  0.44827989, -0.44027555],        [-0.25490962,  2.220063  , -1.54695238, -0.09388522, -1.77008598,          0.88367563,  2.05341272,  2.33346992]])

     

    stock_change.dtype

     

    dtype('float64')

     

    stock_change.astype(np.float32)

     

    array([[-0.5889853 , -0.93535334, -0.0675299 , -0.7240303 , -0.86873674,          0.2366924 ,  0.9193499 ,  0.957337  ,  0.7036584 , -0.25490963],        [-0.992351  ,  0.7094065 , -0.669347  , -0.33760595,  1.7557883 ,         -0.17527665,  1.127985  ,  1.1648066 ,  0.6032422 ,  2.220063  ],        [-1.3326412 , -1.0183157 , -1.090388  ,  0.35145548, -1.5240757 ,          1.2438091 ,  0.53576183, -0.87476355,  0.9406117 , -1.5469524 ],        [-0.6141568 ,  0.34004292,  0.53421926,  0.9327384 , -2.391817  ,          0.73553395, -0.37974304,  0.12472411,  0.31243104, -0.09388521],        [ 0.6369939 ,  0.5451397 , -1.4511406 ,  0.12302607,  0.8179262 ,         -0.98861414, -1.3716406 ,  0.04710424,  0.35452202, -1.7700859 ],        [ 0.05821616, -0.10157081, -0.0177392 , -0.8055697 , -0.644111  ,          1.6202829 ,  0.12565102,  0.83290994,  1.0660448 ,  0.88367563],        [ 1.827245  , -0.625139  , -1.0068896 , -1.3162787 , -0.8110959 ,          0.96967536,  0.7595685 , -0.80162364,  0.4482799 ,  2.0534127 ],        [-1.7788185 ,  0.79750866, -0.29012385,  0.60888445, -1.056431  ,          0.17126915, -2.242883  ,  0.3002412 , -0.44027555,  2.3334699 ]],       dtype=float32)

     

    数组的运算

    # 逻辑运算 stock_change stock_change1=np.copy(stock_change)

    stock_change>0.5 # 逻辑判断, 如果涨跌幅大于0.5就标记为True 否则为False

     

    array([[False, False, False, False, False, False,  True,  True,  True,         False],        [False,  True, False, False,  True, False,  True,  True,  True,          True],        [False, False, False, False, False,  True,  True, False,  True,         False],        [False, False,  True,  True, False,  True, False, False, False,         False],        [ True,  True, False, False,  True, False, False, False, False,         False],        [False, False, False, False, False,  True, False,  True,  True,          True],        [ True, False, False, False, False,  True,  True, False, False,          True],        [False,  True, False,  True, False, False, False, False, False,          True]])

     

    stock_change1[stock_change1>0.5]=1  # 如果涨跌幅大于0.5就把值改为1

    stock_change1

     

    array([[-0.5889853 , -0.93535336, -0.0675299 , -0.72403031, -0.86873673,          0.2366924 ,  1.        ,  1.        ,  1.        , -0.25490962],        [-0.99235101,  1.        , -0.66934701, -0.33760595,  1.        ,         -0.17527665,  1.        ,  1.        ,  1.        ,  1.        ],        [-1.3326412 , -1.01831572, -1.09038797,  0.35145548, -1.52407572,          1.        ,  1.        , -0.87476354,  1.        , -1.54695238],        [-0.6141568 ,  0.34004292,  1.        ,  1.        , -2.39181704,          1.        , -0.37974303,  0.12472411,  0.31243104, -0.09388522],        [ 1.        ,  1.        , -1.45114066,  0.12302606,  1.        ,         -0.98861413, -1.37164055,  0.04710424,  0.35452202, -1.77008598],        [ 0.05821616, -0.10157081, -0.0177392 , -0.80556969, -0.644111  ,          1.        ,  0.12565102,  1.        ,  1.        ,  1.        ],        [ 1.        , -0.625139  , -1.00688955, -1.31627874, -0.81109591,          1.        ,  1.        , -0.80162364,  0.44827989,  1.        ],        [-1.7788185 ,  1.        , -0.29012385,  1.        , -1.05643106,          0.17126915, -2.24288296,  0.30024122, -0.44027555,  1.        ]])

     

    stock_change

     

    array([[-0.5889853 , -0.93535336, -0.0675299 , -0.72403031, -0.86873673,          0.2366924 ,  0.91934989,  0.95733701,  0.7036584 , -0.25490962],        [-0.99235101,  0.70940651, -0.66934701, -0.33760595,  1.75578837,         -0.17527665,  1.127985  ,  1.16480656,  0.60324222,  2.220063  ],        [-1.3326412 , -1.01831572, -1.09038797,  0.35145548, -1.52407572,          1.24380911,  0.53576183, -0.87476354,  0.94061172, -1.54695238],        [-0.6141568 ,  0.34004292,  0.53421929,  0.93273841, -2.39181704,          0.73553393, -0.37974303,  0.12472411,  0.31243104, -0.09388522],        [ 0.63699391,  0.54513968, -1.45114066,  0.12302606,  0.8179262 ,         -0.98861413, -1.37164055,  0.04710424,  0.35452202, -1.77008598],        [ 0.05821616, -0.10157081, -0.0177392 , -0.80556969, -0.644111  ,          1.62028286,  0.12565102,  0.83290996,  1.06604483,  0.88367563],        [ 1.82724499, -0.625139  , -1.00688955, -1.31627874, -0.81109591,          0.96967537,  0.75956849, -0.80162364,  0.44827989,  2.05341272],        [-1.7788185 ,  0.79750866, -0.29012385,  0.60888444, -1.05643106,          0.17126915, -2.24288296,  0.30024122, -0.44027555,  2.33346992]])

     

    np.all(stock_change[0:2,0:5]>0)

     

    False

     

    np.any(stock_change[0:2,0:5]>0)

     

    True

     

    temp=stock_change[0:4,0:4] np.where(temp>0,1,0)

     

    array([[0, 0, 0, 0],        [0, 1, 0, 0],        [0, 0, 0, 1],        [0, 1, 1, 1]])

     

    np.where(np.logical_and(temp > 0.5, temp < 1), 1, 0)

     

    array([[0, 0, 0, 0],        [0, 1, 0, 0],        [0, 0, 0, 0],        [0, 0, 1, 1]])

     

    np.where(np.logical_or(temp > 0.5, temp < -0.5), 1, 0)

     

    array([[1, 1, 0, 1],        [1, 1, 1, 0],        [1, 1, 1, 0],        [1, 0, 1, 1]])

     

    temp

     

    array([[-0.5889853 , -0.93535336, -0.0675299 , -0.72403031],        [-0.99235101,  0.70940651, -0.66934701, -0.33760595],        [-1.3326412 , -1.01831572, -1.09038797,  0.35145548],        [-0.6141568 ,  0.34004292,  0.53421929,  0.93273841]])

     

    np.max(temp)

     

    0.9327384109856901

     

    np.max(temp,axis=1)

     

    array([-0.0675299 ,  0.70940651,  0.35145548,  0.93273841])

     

    np.max(temp, axis=0)

     

    array([-0.5889853 ,  0.70940651,  0.53421929,  0.93273841])

     

    np.std(temp,axis=1)

     

    array([0.320048  , 0.63915226, 0.65926327, 0.56843862])

     

    np.argmax(temp,axis=1)

     

    array([2, 1, 3, 3])

     

    数组间的运算

    arr=np.array([[1,2,3,4],[5,6,7,8]])

    arr

     

    array([[1, 2, 3, 4],        [5, 6, 7, 8]])

     

    arr+10

     

    array([[11, 12, 13, 14],        [15, 16, 17, 18]])

     

    arr*10

     

    array([[10, 20, 30, 40],        [50, 60, 70, 80]])

     

    arr/10

     

    array([[0.1, 0.2, 0.3, 0.4],        [0.5, 0.6, 0.7, 0.8]])

     

    ### 矩阵的计算 a = np.array([[80, 86], [82, 80], [85, 78], [90, 90], [86, 82], [82, 90], [78, 80], [92, 94]]) b = np.array([[0.7], [0.3]])

    a_mat=np.mat(a)

    a_mat

     

    matrix([[80, 86],         [82, 80],         [85, 78],         [90, 90],         [86, 82],         [82, 90],         [78, 80],         [92, 94]])

     

    np.matmul(a,b)

     

    array([[81.8],        [81.4],        [82.9],        [90. ],        [84.8],        [84.4],        [78.6],        [92.6]])

     

    np.dot(a,b)

     

    array([[81.8],        [81.4],        [82.9],        [90. ],        [84.8],        [84.4],        [78.6],        [92.6]])

     

    a@b

     

    array([[81.8],        [81.4],        [82.9],        [90. ],        [84.8],        [84.4],        [78.6],        [92.6]])

     

    b_mat=np.mat(b)

    a_mat*b_mat

     

    matrix([[81.8],         [81.4],         [82.9],         [90. ],         [84.8],         [84.4],         [78.6],         [92.6]])

     

     

    Processed: 0.011, SQL: 9