PySpark集群出错解决记要

    技术2022-07-11  178

    一、现象
    用java写的在spark on yarn 模式下正常。用python写的在spark on local 模式下正常,在spark on yarn 模式下出错。 Exception: Randomness of hash of string should be disabled via PYTHONHASHSEED at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRDD.scala:193) at org.apache.spark.api.python.PythonRunner$$anon$1.<init>(PythonRDD.scala:234) at org.apache.spark.api.python.PythonRunner.compute(PythonRDD.scala:152) at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:63) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323) at org.apache.spark.rdd.RDD.iterator(RDD.scala:287) at org.apache.spark.api.python.PairwiseRDD.compute(PythonRDD.scala:390) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323) at org.apache.spark.rdd.RDD.iterator(RDD.scala:287) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53) at org.apache.spark.scheduler.Task.run(Task.scala:99) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:322) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) ... 1 more
    二、问题原因

    经过排查,发现是python 的 PYTHONHASHSEED 环境变量引起的问题。 新版的python为了安全性,在hash计算时加入随加盐,在单会话下,加的盐是一致的,所以hash出来的结果一致。而在集群多台服务器一起计算时,每台服务器有各自的会话,大家都加随机加盐,结果导致各自的hash结果不一致。从而引起程序报错。

    三、解决方案

    解决方法很简单,关闭随机加盐,或设置相同的盐值。 方法一:

    conf = SparkConf() conf.set("spark.executorEnv.PYTHONHASHSEED","0");

    方法二: 修改spark-defaults.conf,增加

    spark.executorEnv.PYTHONHASHSEED=0
    Processed: 0.011, SQL: 9