Datawha组队——Pandas(下)综合练习(打卡)

    技术2022-07-11  143

    import pandas as pd import numpy as np import missingno as msno import matplotlib.pyplot as plt plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签 plt.rcParams['axes.unicode_minus']=False #用来正常显示负号 #读取数据 df = pd.read_csv('端午粽子数据.csv') df.columns = df.columns.str.strip() df.columns print(msno.matrix(df))

    df = df.drop(df.index[df['发货地址'].isnull()],axis=0) # df_1 = df[df['发货地址'].str.contains(r'[杭州]{2}')] def is_number(x): try: float(x) return True except (SyntaxError,ValueError) as e : return False df[~df.价格.map(is_number)] df.loc[[538,4376],'价格']=['45.9','45.0'] df['价格'] = df['价格'].astype(float) df_1 = df[df['发货地址'].str.contains(r'[杭州]{2}')] df_1['价格'].mean()

    结果为:

    df[df['标题'].str.contains(r'[嘉兴]{2}') & ~(df['发货地址'].str.contains(r'[嘉兴]{2}'))]

    df['价格'].describe(percentiles=[.2,.4,.6,.8]).loc[['20%','40%','60%','80%']] df['new_价格'] = pd.cut(df['价格'],[0.0,29.3,43.9,69.84,124.80,np.inf],labels=['低','较低','中','较高','高']) df.set_index('new_价格').sort_index(ascending=False).head()

    df['new_付款人数'] = df['付款人数'].astype('string').str.extract(r'(\d+(\.\d+)?)')[0] # df['new_付款人数_wan'] = df['付款人数'].astype('string').str.extract(r'(\d+\.?\d*\d+)',expand=False) df['new_付款人数'] = pd.to_numeric(df['new_付款人数'],errors='coerce') df['付款人数'] = df['付款人数'].apply(str) s1 = pd.to_numeric((df[df['付款人数'].str.contains(r'[万]{1}')]['new_付款人数']*10000)) s2 = pd.to_numeric(df[~(df['付款人数'].str.contains(r'[万]{1}'))]['new_付款人数']) df['new_付款人数']= pd.concat([s1,s2],axis=0) #查看缺失值数量 print(df['new_付款人数'].isnull().sum()) print(df.index[df['new_付款人数'].isnull()]) print(df.loc[183]) g = df.groupby(df['new_价格']) # g.groups print(g.get_group('低')['new_付款人数'].isnull().sum()) print(g.get_group('较低')['new_付款人数'].isnull().sum()) print(g.get_group('中')['new_付款人数'].isnull().sum()) print(g.get_group('较高')['new_付款人数'].isnull().sum()) print(g.get_group('高')['new_付款人数'].isnull().sum()) #求均值 print(g.get_group('低')['new_付款人数'].mean()) print(g.get_group('较低')['new_付款人数'].mean()) print(g.get_group('中')['new_付款人数'].mean()) print(g.get_group('较高')['new_付款人数'].mean()) print(g.get_group('高')['new_付款人数'].mean()) #缺失值填充 df['new_付款人数'].fillna(g.get_group('低')['new_付款人数'].mean(),inplace=True) df['new_付款人数'].isnull().sum()

    存在问题:通过之前对价格的分类对数据进行分类填充,但是在填充时,发现不能分组填充,只能一次性填充,这个问题待思考解决。

    #字符串拼接 address = [] for i in df['发货地址'].str.split(' '): if len(i)>1: add = i[0]+i[1] else: add = i[0] address.append(add) df['new_发货地址']= address ('商品发货地为'+df['new_发货地址']+',店铺为'+df['店铺']+',共计'+df['付款人数']+',单价为'+df['价格']).to_frame().rename(columns={0:'ID'}) #apply函数 s = df.apply(lambda r:f'商品发货地址为{r["new_发货地址"]},店铺为{r["店铺"]},共计{r["付款人数"]},单价为{r["价格"]}',axis=1).to_frame().rename(columns={0:'ID'}) s

    address = [] shops = [] persons = [] prices = [] for i in s['ID'].str.split(','): add = i[0].split('为')[1] if len(add)>3: add = add[:2] + ' ' + add[2:] shop = i[1].split('为')[1] person = i[2].split('计')[1] price = i[3].split('为')[1] address.append(add) shops.append(shop) persons.append(person) prices.append(price) s['发货地址'] = address s['店铺'] = shops s['付款人数'] = persons s['价格'] = prices print(s)

    df = pd.read_csv('墨尔本温度数据.csv') df

    holiday = pd.date_range(start='19810501', end='19810503').append( pd.date_range(start='19820501', end='19820503')).append( pd.date_range(start='19830501', end='19830503')).append( pd.date_range(start='19840501', end='19840503')).append( pd.date_range(start='19850501', end='19850503')).append( pd.date_range(start='19860501', end='19860503')).append( pd.date_range(start='19870501', end='19870503')).append( pd.date_range(start='19880501', end='19880503')).append( pd.date_range(start='19890501', end='19890503')).append( pd.date_range(start='19900501', end='19900503')).append( pd.date_range(start='19811001', end='19811007')).append( pd.date_range(start='19821001', end='19821007')).append( pd.date_range(start='19831001', end='19831007')).append( pd.date_range(start='19841001', end='19841007')).append( pd.date_range(start='19851001', end='19851007')).append( pd.date_range(start='19861001', end='19861007')).append( pd.date_range(start='19871001', end='19871007')).append( pd.date_range(start='19881001', end='19881007')).append( pd.date_range(start='19891001', end='19891007')).append( pd.date_range(start='19891001', end='19891007')).append( pd.date_range(start='19810101', end='19901231',freq='BMS')) holiday = holiday.drop_duplicates() df['Date'] = pd.to_datetime(df['Date']) result = df[~df['Date'].isin(holiday)].set_index('Date').resample('M').mean() result

    #常规法 years = [] months = [] for i in df['Date'].astype('string').str.split('-'): year = i[0] month = str(int(i[1])) years.append(year) months.append(month) df['Y'] = years df['M'] = months Y = df.groupby('Y') M = df.groupby(['Y','M']) tempYlist = [] tempYZlist = [] for i in range(1981,1991): tempYlist = [] for j in range(1,13): tempY = Y.get_group(str(i))[Y.get_group(str(i))['M']==str(j)]['Temp'].min() # print(tempY) tempYlist.append(tempY) Ymean = np.sum(np.mean(tempYlist)) tempMZlist = [] for i in range(1,13): tempMlist = [] for j in range(1981,1991): tempM = Y.get_group(str(j))[Y.get_group(str(j))['M']==str(i)]['Temp'].min() tempMlist.append(tempM) print(tempMlist) tempMZlist.append(np.mean(tempMlist)) Sj = tempMZlist/Ymean Sj

    import pandas as pd import numpy as np import datetime df = pd.read_csv('摩拜单车数据.csv') df['new_start_time'] = pd.to_datetime(df['start_time'] ) df['new_start_time'] = pd.to_datetime(df['new_start_time'].apply(lambda x:datetime.datetime.strftime(x,'%Y-%m-%d'))) # datetime.datetime.strftime(df['new_start_time'][0],'%Y-%m-%d')

    df['start_time'] = pd.to_datetime(df['start_time']) df['work_week'] = df['start_time'].dt.dayofweek df.groupby('work_week').size()

    对数据按星期分类,0-6代表星期一到星期天,统计每天的交易量

    data = df.groupby('new_start_time') zts = pd.Timestamp('2016-07-31 07:30') zte = pd.to_datetime('2016-07-31 09:30') wts = pd.to_datetime('2016-07-31 17:30') wte = pd.to_datetime('2016-07-31 19:00') time = pd.to_datetime('2016-07-31 00:00:00') times = [] countZs = [] countWs = [] for i in range(1,32): zts = zts + pd.offsets.Day() zte = zte + pd.offsets.Day() wts = wts + pd.offsets.Day() wte = wte + pd.offsets.Day() time = datetime.datetime.strftime(time + pd.offsets.Day(),'%Y-%m-%d %H:%M:%S') countZ = data.get_group(time)[(data.get_group(time)['start_time']>= zts) & (data.get_group(time)['start_time']<= zte)]['start_time'].count() countW = data.get_group(time)[(data.get_group(time)['start_time']>= wts) & (data.get_group(time)['start_time']<= wte)]['start_time'].count() # print(countZ,countW) time = pd.Timestamp(time) times.append(time) countZs.append(countZ) countWs.append(countW) workdf = pd.DataFrame() workdf['time']=times workdf['countZ']=countZs workdf['countW']=countWs workdf['time'] = pd.to_datetime(workdf['time']) workday = pd.date_range(start='2016-08-01',end='2016-08-31 ',freq='B') workdf[workdf['time'].isin(workday)][workdf['countZ']>workdf['countW']]

    统计出8月份每周五的记录量

    f = df[df['work_week']==4].groupby('new_start_time') print(f.size())

    data = df[df['new_start_time']==pd.to_datetime('2016-08-26')] data['end_time'] = pd.to_datetime(data['end_time']) data['start_time'] = pd.to_datetime(data['start_time']) data['time_sep'] = (data['end_time']-data['start_time']).dt.seconds/60 data['new_time_sep'] = pd.cut(data['time_sep'],[0,30,120,360],labels=['one','two','three']) data.set_index(['new_time_sep']) one = data[data['new_time_sep']=='one']['time_sep'].mean() two = data[data['new_time_sep']=='two']['time_sep'].mean() three = data[data['new_time_sep']=='three']['time_sep'].mean() print(one,two,three)

    #公式计算 import math lon1 = df['start_location_x'] lat1 = df['start_location_y'] lon2 = df['end_location_x'] lat2 = df['end_location_y'] R = 6371 dlon = lon2 - lon1 dlat = lat2 - lat1 a = (np.sin(dlat/2))**2 + np.cos(lat1) * np.cos(lat2) * (np.sin(dlon/2))**2 c = 2 * np.arctan2(np.sqrt(a), np.sqrt(1-a)) d = R * c #geopy !pip install geopy import geopy.distance # print (geopy.distance.distance(coords_1, coords_2).km) lon1 = df['start_location_x'].tolist() lat1 = df['start_location_y'].tolist() lon2 = df['end_location_x'].tolist() lat2 = df['end_location_y'].tolist() coords_1 = list(zip(lat1, lon1)) coords_2 = list(zip(lat2, lon2)) dist = [] for i,j in zip(coords_1,coords_2): dis = geopy.distance.distance(i, j).km dist.append(dis)

    #距离 df['dis'] = d #匀速=距离/时间 df['sudu'] = df['dis']/df['time_sep'] #3sigmoid筛选一禅 Dmean = df['sudu'].mean() Dstd = df['sudu'].std() #阈值 thre1 = Dmean-3*Dstd thre2 = Dmean+3*Dstd #异常值 outlies = df[(df['sudu']<thre1) | (df['sudu']>thre2)]

    画图展示:

    #未处理之前 plt.figure() plt.scatter(range(df.shape[0]),df['sudu'].tolist()) plt.xlabel('用户') plt.ylabel('速度值') plt.title('未处理缺失值-速度图像') plt.show() #处理之后 Dmean = df['sudu'].mean() Dstd = df['sudu'].std() thre1 = Dmean-3*Dstd thre2 = Dmean+3*Dstd outlies = df.index[(df['sudu']<thre1) | (df['sudu']>thre2)] data = df.drop(outlies,axis=0) plt.figure() plt.scatter(range(data.shape[0]),data['sudu'].tolist()) plt.xlabel('用户') plt.ylabel('速度值') plt.title('处理缺失值-速度图像') plt.show()

     

    Processed: 0.009, SQL: 9